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Monopole	&	Exo2cs	Detector	At	LHC	



velocity:	β	=	v/c	

Key	feature:	high	ionisa2on	
charge	

High	ionisa^on	(HI)	possible	when:	
▫  mul^ple	electric	charge	(H++,	Q-balls,	etc.)	=	n	×	e	
▫  very	low	velocity	&	electric	charge,	i.e.	Stable	Massive	Charged	Par^cles	(SMCPs)		
▫  magne^c	charge	(monopoles,	dyons)	=	ngD	=	n	×	68.5	×	e			

!  a	singly	charged	rela^vis^c	monopole	has	ionisa^on		~4700	^mes	MIP!!	

▫  any	combina^on	of	the	above		

=	z/β	

Par2cles	must	be	massive,	long-lived	&	highly	ionising		to	be	detected	at	MoEDAL	
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Electric	charge	
Bethe-Bloch	formula	

Magne2c	charge	
Ahlen	formula	

EXA2017	

MoEDAL	detectors	have	a	
threshold	of	z/β ~	5	–	10		



MoEDAL	sensi^vity	
Cross-sec^on	limits	for	magne^c	and	electric	charge	assuming	that:		
▫  ~	one	MoEDAL	event	is	required	for	discovery	and	~100	events	in	the	other	LHC	detectors	
▫  integrated	luminosi^es	correspond	to	about	two	years	of	14	TeV	run	

De Roeck, Katre, Mermod, Milstead, Sloan, EPJC72 (2012) 1985 [arXiv:1112.2999] 
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MoEDAL	offers	robustness	against	^ming	and	well-es^mated	signal	efficiency		



MoEDAL	physics	programme	

Highly	
ionising	
par^cles	

Magne^c	
monopoles	

KK	extra	
dimensions	

D-maqer	

Quirks	

Q-balls	

Black-hole	
remnants	

Doubly	
charged	
Higgs	

SUSY		
R-hadrons		
sleptons	
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MoEDAL	physics	program	
Int.	J.	Mod.	Phys.	A29	(2014)	

1430050		
[arXiv:1405.7662]		

Searching	for	
massive,		

long-lived	&	
highly	ionising		

par2cles	
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MoEDAL	detector	

MoEDAL	is	unlike	any	other	LHC	experiment:	
▫  mostly	passive	detectors;	no	trigger;	no	readout	
▫  the	largest	deployment	of	passive	Nuclear	Track	Detectors		(NTDs)			
at	an	accelerator	
▫  the	1st		^me	trapping	detectors	are	deployed	as	a	detector	

DETECTOR	SYSTEMS	
①  Low-threshold	NTD	

(LT-NTD)	array		
•  z/β	>	~5	–	10		

②  Very	High	Charge	
Catcher	NTD		
(HCC-NTD)	array		

•  z/β	>	~50	
③  TimePix	radia^on	

background		
monitor	

④  Monopole	Trapping	
detector	(MMT)	

MoEDAL	LHCb	

V.A.	Mitsou	
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		1️⃣		&			2️⃣		HI	par^cle	detec^on	in	NTDs	
•  Passage	of	a	highly	ionising	par^cle	through	the	

plas^c	NTD	marked	by	an	invisible	damage	zone	
(“latent	track”)	along	the	trajectory	

•  The	damage	zone	is	revealed	as	a	cone-shaped	
etch-pit	when	the	plas^c	sheet	is	chemically	
etched		

•  Plas^c	sheets	are	later	scanned	to	detect	etch-pits	

V.A.	Mitsou	
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Looking	for	
aligned	etch	pits	

in	mul^ple	sheets	

EXA2017	



		1️⃣		&			2️⃣			NTDs	deployment	
V.A.	Mitsou	
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2012:	LT-NTD	
NTDs	sheets	kept	in	boxes	mounted	
onto	LHCb	VELO	cavern	walls	

2015-2016:	LT-NTD	
Top	of	VELO	cover		
Closest	possible	
loca^on	to	IP	

2015-2016:	HCC-NTD	
Installed	in	LHCb	acceptance	
between	RICH1	and	TT	



		3️⃣			TimePix	radia^on	monitor	
•  Timepix	(MediPix)	chips	used	to	measure	online	the	

radia^on	field		and	monitor	spalla^on	product	
background	

•  Essen^ally	act	as	liqle	electronic	“bubble-chambers”	
•  The	only	ac^ve	element	in	MoEDAL	
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•  256×256	pixel	solid	state	detector	
•  14×14	mm	ac^ve	area	
•  amplifier	+	comparator	+	counter	+	^mer		

2015	deployment	
of	MediPix	chips	
in	MoEDAL	

Sample	calibrated	frame	in	MoEDAL	TPX04		



		4️⃣		MMT:	Magne^c	Monopole	Trapper	
•  Binding	energy	of	monopoles	in	nuclei	
with	finite	magne^c	dipole	moments:	
O(100	keV)	
•  MMTs	analysed	with	superconduc^ng		
quantum	interference	device	(SQUID)	
•  Material:	Aluminium	
▫  large	nuclear	dipole	moment		
▫  rela^vely	cheap	

•  Persistent	current:	difference	between	
resul^ng	current	a�er	and	before		
▫  first	subtract	current	measurement	for	

empty	holder		
▫  if	other	than	zero	→	monopole	signature	

V.A.	Mitsou	
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Typical	sample	&		
pseudo-monopole	curves	



MMTs	deployment	
V.A.	Mitsou	
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2012	
11	boxes	each	containing	18	Al	rods	of		
60	cm	length	and	2.54	cm	diameter	(160	kg)	

2015-2016	
•  Installed	in	addi^onal	
loca^ons:	sides	A	&	C,	too	

•  Approximately	800	kg	of	Al	
•  Total	2400	aluminum	bars	
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•  @	8	TeV				JHEP		1608	(2016)	067	[arXiv:1604.06645]		
•  @	13	TeV			Phys.Rev.Leq.	118	(2017)	061801	[arXiv:1611.06817]				



Magne^c	monopoles	
•  Mo^va^on	
▫  symmetrisa^on	of	Maxwell’s	eqs.	
▫  electric	charge	quan^sa^on	

•  Proper^es	
▫  magne^c	charge		=		ng		=		n×68.5e		
▫  coupling	constant	=	g/Ћc	~34	
▫  spin	and	mass	not	predicted	

V.A.	Mitsou	
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MoEDAL	improves	reach	of	monopole	searches	w.r.t.	cross	sec^on	&	charge		

		

Drell	Yan	mechanism	 Photon	fusion	

HIGHLY	IONISING	

Produc2on		
mechanisms		
in	colliders	

Box	diagram	



MMT2015:	scanning		
•  Analysed	with	SQUID	at	ETH	Zürich	
•  Excellent	charge	resolu^on	(<	0.1	gD)	except	for	outliers		

V.A.	Mitsou	
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No	monopole	with	charge	>	0.5	gD	observed	in	MMT	samples	at	99.5%	CL	

Persistent current after first 
passage for all samples 

Detector:	prototype	of	222	kg	
of	aluminium	bars	
Exposure:	0.371	`-1	of	13	TeV	
pp	collisions	during	2015	

PRL	118	(2017)	061801	
[arXiv:1611.06817]	

Persistent current for multiple 
measurements of candidates 



Geometry	

Material	descrip^on	
between	IP	&	detector	

Kinema^cs	

Event	genera^on	of	Drell	Yan	
produc^on	
coupling	⪼	1	⇒	non-perturba^ve!		

Propaga^on	in	maqer	

•	Ahlen	formula	
•	Monopole	energy	loss	
•	Stopping	range	

MMT2015:	analysis	
V.A.	Mitsou	EXA2017	
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JHEP	1608	(2016)	067		 	arXiv:1606.01220		
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MMT2015:	results		

•  First	monopole	searches	at	13	TeV	at	LHC	
•  First	limits	for	magne^c	charge	of	5	gD	and	masses	>	3.5	TeV	

V.A.	Mitsou	EXA2017	
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Detector:	prototype	of	222	kg	of	aluminium	bars	
Exposure:	0.371	`-1	of	13	TeV	pp	collisions	during	2015	

PRL	118	(2017)	061801	
[arXiv:1611.06817]	

DY	spin-1/2			 DY	spin-0			



Monopole	mass	limits	
•  Mass	limits	are	highly	

model-dependent	
▫  Drell-Yan	produc^on	does	not	

take	into	account	non-
perturba^ve	nature	of	the	large	
monopole-photon	coupling	

•  Exclude	low	masses	for		
|g|	=	4gD	for	the	first	^me	at	
LHC	

•  World-best	collider	limits	for		
|g|	≥	2	gD	

V.A.	Mitsou	EXA2017	
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DY	lower	mass	limits	
[GeV]	 |g|	=	gD	 |g|	=	2gD	 |g|	=	3gD	 |g|	=	4gD	

MoEDAL		
13	TeV	

spin	½		 890	 1250	 1260	 1100	
spin	0	 460	 760	 800	 650	

MoEDAL		
8	TeV	

spin	½		 700	 920	 840	 —	
spin	0	 420	 600	 560	 —	

ATLAS		
8	TeV	

spin	½		 1340	 —	 —	 —	
spin	0	 1050	 —	 —	 —	

PRL	118	(2017)	061801	
[arXiv:1611.06817]	
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•  What	about	electrically-charged	par^cles?			



Why	MoEDAL	when	searching	SMCPs?	
•  ATLAS	and	CMS	triggers	have	to		
▫  rely	on	other	“objects”,	e.g.	ETmiss,	that	accompany	SMCPs,	thus	limi^ng	the	
reach	of	the	search	
!  final	states	with	associated	object	present	
!  trigger	threshold	set	high	for	high	luminosity			

▫  develop	specialised	triggers	
!  dedicated	studies	needed	
!  usually	efficiency	significantly	less	than	100%	

•  Timing:	signal	from	(slow-moving)	SMCP	should	arrive	within	the	correct	
bunch	crossing	
•  MoEDAL	mainly	constrained	by	its	geometrical	acceptance		
•  When	looking	for	trapped	par^cles	
▫  monitoring	of	detector	volumes	in	an	underground/basement	laboratory	has	
less	background	than	using	empty	butches	in	LHC	cavern		

V.A.	Mitsou	EXA2017	
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Slepton	searches	comparison*	
ATLAS	/	CMS	 MoEDAL	 comments	

Velocity	 β	>	0.2	
Constrained	by	LHC	bunch	
paqern		

β	<	0.2	
Constrained	by	NTD	Z/β	
threshold	

Complementarity	😀	

Analysis	 Not	simple,	involving	several	
detector	components,	
electronics,	triggers,	…	

Simple	and	robust	 😊	
	

Efficiency	

ε	×	A		order	of	20%	
See	limitaEons	in	previous	
slide	

~	100%	(if	β	≲	0.2)	 😐	

Acceptance	 •  Geometry:	~	50%	for	2015;	
scalable	to	higher	coverage	

•  β-cut	yield:	~10%	
☞	highly	model	dependent		

Background	 May	be	considerable	or	
difficult	to	es^mate	

Prac^cally	zero	 For	same	signal	yield,	
MoEDAL	should	have	
beqer	sensi^vity	😊	

Luminosity	 high	 factor	of	10-50	less	 LIMITING	FACTOR	
😕	

V.A.	Mitsou	EXA2017	
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*	Indica^ve	numbers	



Nuclear	Track	Detectors	coverage	
•  High	acceptance	in	central	region	η~0	
▫  back-to-back	pair	produc^on	means	probability	>~	70%	for	at	least	one	SMCP	
to	hit	NTD	

•  For	par^cles	over	z/β	threshold,	detec^on	efficiency	prac^cally	100%	

V.A.	Mitsou	EXA2017	
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Credit:	Daniel	Felea	

2015	NTDs	



SUSY	long-lived	par^cles	(relevant	for	MoEDAL)	
•  Long-lived	sleptons	(staus	mostly)	
▫  Gauge-mediated	symmetry-breaking	(GMSB):		

stau	NLSP	decays	via	gravita^onal	interac^on		
to	gravi^no	LSP	

▫  Coannihila2on	region	in	CMSSM:	long	lived	stau,	when	m(τ̃)	−	m(χ̃10)	<	m(τ)	
➜	naturally	long	life^me	for	stau	in	both	cases	
	

•  R-hadrons	
▫  Gluinos	in	Split	Supersymmetry:	g̃qq̄,	g̃qqq,	g̃g	

!  long-lived	because	squarks	very	heavy	
!  gluino	hadrons	may	flip	charge	as	they	pass	through	maqer	

▫  Stops:	t̃q̄,	t̃qq	
!  e.g.	stop	NLSP	in	gravi^no	dark	maqer	
!  e.g.	as	LSP	in	R-parity	viola^ng	SUSY,	long-lived	when	RPV	coupling(s)	small	

•  Long-lived	charginos	
▫  Anomaly-mediated	symmetry-breaking	(AMSB):		χ1̃±	and		χ1̃0		

are	mass	degenerate	⇒		χ̃1±	becomes	long-lived	

V.A.	Mitsou	
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!τ → τ !χ1
0

!t → t !G

!χ1
± → π ± !χ1

0



Improving	complementarity	
•  Relaxing	constraints	imposed	in	ATLAS/CMS	selec^ons	
•  Example:	CMS	dE/dx	analysis	@7-8	TeV		
[JHEP07	(2013)	122,	arXiv:1305.0491]	

V.A.	Mitsou	EXA2017	
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Relaxing	both	constraints	

In	collabora^on	with	Kazuki	Sakurai	



Results	for	g̃g̃,		g̃→jjχ̃10,		χ̃10→τ±τ̃1	
V.A.	Mitsou	EXA2017	
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CMS	affected	two-ways:		
a) no	pixel	hit	
b)  too	large	impact	parameters	

End-of-run-3 (2023) luminosity  

Different  
β thresholds  

Run 2 (2018) vs. Run-3 (2023) luminosity 

βthr = 0.2 
3 MoEDAL signal  

events required 

•  Comparison	of	CMS	exclusion	with	MoEDAL	
discovery	poten^al	requiring	1	event		

•  Conserva^ve	es^mate	of	MoEDAL	luminosity	

τ̃1	metastable,	e.g.	gravi^no	LSP	
➜	detected	by	MoEDAL	

χ̃10	long-lived	despite	large	
mass	split	between	χ̃10	and	
τ̃1	➜	decays	in	tracker	

(massive)	τ±	produces	a	kink	
between	χ̃10	and	τ̃1	tracks		
⇒	large	impact	parameters			
dxy,	dz		

MoEDAL	can	cover	long-life^me	region	
inaccessible	by	ATLAS/CMS	even	with	a	
moderate	NTD	performance	z/β	>	10	



•  MoEDAL	is	searching	for	(meta)stable	highly	ionising	par2cles	
▫  least	tested	signals	of	New	Physics	
▫  predicted	in	variety	of	theore^cal	models	
▫  design	opEmised	for	such	searches		
▫  combining	various	detector	technologies	

•  Results	on	monopole	searches	at	8	TeV	&	13	TeV	published	
▫  no	magne^c	monopole	detected	
▫  bounds	set	significantly	extend	previous	results	at	high	charges!

•  Looking	forward	to	many	more	results	from	Run-II	and	beyond	
▫  for	more	monopole	interpreta^ons	

!  produc^on	via	photon	fusion	
!  spin	1	monopoles	

▫  with	NTDs		
▫  for	electrically-charged	par^cles	

Summary	&	outlook	
V.A.	Mitsou	
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Project	supported	by	a	2017	Leonardo	Grant	for	Researchers	and	Cultural	Creators,	BBVA	FoundaEon	
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Analysis procedure 

•  	Electrically-charged	par^cle:	dE/dx	~	β-2	➔		slows	down	appreciably	within	NTD		
➔	opening	angle	of	etch-pit	cone	becomes	smaller	

•  Magne^c	monopole:		dE/dx	~	lnβ		
▫  slow	MM:	slows	down	within	an	NTD	stack	➔	its	ionisa^on	falls	➔	opening	angle	of	the	

etch	pits	would	become	larger	
▫  rela^vis^c	MM:	dE/dx	essen^ally	constant	➔	trail	of	equal	diameter	etch-pit	pairs	

•  The	reduced	etch	rate	is	simply	related	to	the	restricted	energy	loss		
REL	=	(dE/dx)10nm	from	track	

V.A.	Mitsou	
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depth:	

EXA2017	



Dirac’s	Monopole	
•  Paul	Dirac	in	1931	hypothesized	that	the	magne^c	

monopole	exists	

•  In	his	concep^on	the	monopole	was	the	end	of	an	
infinitely	long	and	infinitely	thin	solenoid	

•  Dirac’s	quan^sa^on	condi^on:	

•  Where	g	is	the	“magne^c	charge”	and	α	is	the	fine	
structure	constant	1/137	

•  This	means	that	g	=	68.5e	(when	n=1)!		

•  The	other	way	around:	IF	there	is	a	magne^c	
monopole	then	charge	is	quan^sed:	

V.A.	Mitsou	
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Dirac	String	
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Cross	sec^on	limits	versus	mass	

Limits	extend	up	to	masses	>	2500	GeV	for	the	first	^me	at	the	LHC	
!  reminder:	shown	(^ny)	LO	DY	cross	sec^ons	are	not	reliable		
⇒	makes	sense	to	probe	and	constrain	very	high	masses	

V.A.	Mitsou	EXA2017	
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JHEP	1608	(2016)	067	[arXiv:1604.06645]		

DY	spin-1/2			 DY	spin-0			

Detector:	prototype	
of	160	kg	of	Al	rods	
Exposure:	0.75	`-1	
of	8	TeV	pp	collisions	



Cross	sec^on	limits	versus	charge	

World-best	limits	for	|g|	>	1.5	gD		
▫  previously	~400	GeV	at	Tevatron	[e.g.	CDF	hep-ex/0509015]	
▫  first	2me	at	the	LHC	

V.A.	Mitsou	EXA2017	
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also	covered	by	ATLAS	search	

JHEP	1608	(2016)	067	
[arXiv:1604.06645]		

DY	spin-1/2			 DY	spin-0			

Detector:	prototype	
of	160	kg	of	Al	rods	
Exposure:	0.75	`-1	
of	8	TeV	pp	collisions	



Complementarity	of	MoEDAL	&	other	LHC	exps		

•  Op^mised	for	singly	electrically	
charged	par^cles	(z/β ~	1)		
•  LHC	^ming/trigger	restricts	sensi^vity	
to	(nearly)	relaEvisEc	par^cles	(β	≈	1)	
•  Typically	a	largish	sta^s^cal	sample		
is	needed	to	establish	a	signal	
•  ATLAS	&	CMS	cannot	be	calibrated	
for	highly	ionising	objects	
•  Magne^c	charge	detec^on	via	its	
trajectory	in	non-bend	plane		
→		calibra^on	introduces	large	
systema^cs	

•  Designed	to	detect	charged		
par^cles,	with	effec^ve	or	actual		
z/β	>	5	

•  No	trigger/electronics	→	slowly	moving	
(β	<	~0.5)	par^cles	are	no	problem	

•  One	candidate	event	should	be	enough	
to	establish	a	signal	(no	SM	bkg)	

• MoEDAL	NTDs	are	calibrated	using	
heavy	ion	beams	

• Magne^c-charge	sensi^vity	directly	
calibrated	in	a	clear	way	

ATLAS+CMS	 MoEDAL	

MoEDAL	strengthens	&	expands	the	physics	reach	of	LHC	

V.A.	Mitsou	

33	
EXA2017	



Doubly-charged	Higgs	
•  Extended	Higgs	sector	in	BSM	models:	
SUL(2)	×	SUR(2)	×	UB-L(1)		P-viola^ng	
model		
•  Higgs	triplet	model	with	massive	le�-
handed	neutrinos	but	not	right-handed	
ones																							
•  Common	feature:	doubly	charged	Higgs	
bosons	H±±	as	parts	of	a	Higgs	triplet		
•  Life^me	
▫  depends	on	many		parameters:		

Yukawa	hij	(long	if	<	10-8),	H±±	mass,	...	
▫  essen^ally	there	are	no	constraints	on	its	

life^me	➜	relevant	for	MoEDAL	

V.A.	Mitsou	
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Chiang, Nomura, Tsumura,  
Phys.Rev. D85 (2012) 095023 [arXiv:1202.2014] 
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•  In	some	Large	Extra	Dimension	models	the	forma^on	of	TeV	Black	Holes	(BH)	
by	high	energy	SM	par^cle	collisions	is	predicted		
▫  BH	average	charge	4/3		
▫  slowly	moving	(β	≲	0.3)	

•  Charged	Hawking	BH	evaporate	but	not	completely			
➜	certain	frac^on	of	final	BH	remnants		
carry	mul2ple	charges	
➜	highly	ionising,	relevant	to	MoEDAL		

Black-hole	remnants		
V.A.	Mitsou	
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