

Belle studies of exotic hadrons with heavy flavor

Kenkichi Miyabayashi (Nara Women's University) EXA2017 conference 2017 Sep. 14th

Outline

- KEKB e⁺e⁻ collider and Belle detector
- Production mechanisms of hadrons.
- X(3872) and $Z_c(4430)^+$: exotics in B decays
- $Z_b(10610)^+$ and $Z_b(10650)^+$ at $\Upsilon(10860)$
- $Z_c(3900)^+$ at Y(4260) and similar states
- Extension to charm baryons
- Challenges at higher statistics
- Summary

KEKB/Belle : world highest luminosity e⁺e⁻ collider

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

"XYZ" sensations at Belle

What made it possible?

First of all, the world highest luminosity by KEKB. High resolution 4π spectrometer, Belle.

- Those two brought us possibilities to access;
- Various production mechanisms
 - Each physics process has preferable states.
 - Interplay among several approaches is effective.
- Various decay modes
 - Each hypothesis; other decay modes, partner states.
 - Partner states have specific decay modes.

Variety of recorded reactions

states

Exotic candidate states found in B meson decays

X(3872) and Z_C(4430)[±]

X(3872); various decay modes

More decay modes

Admixture : most plausible interpretation for X(3872)

E. J. Eichiten et al., PRD73,014014(2006); A. M. Badalian et al., PRD85,031103(2012), S.Takeuchi, K.Shimizu and M.Takizawa, PTEP2014(2014)123D01

 $D\overline{D}^*$ component is coupled with the same $J^{PC} c\overline{c}$, $\chi_{c1}(2P)$ (unseen). \rightarrow can explain Br(X \rightarrow D⁰ \overline{D}^{*0})/Br(X \rightarrow J/ $\psi \pi^+\pi^-$) is about 10. \rightarrow pure molecule is too fragile to be produced at Tevatron/LHC. \rightarrow another $\chi_{c1}(2P)$ dominant state would become broad. Reaching such an interpretation is remarkable progress.

More info., absolute br.

At Υ (4S), one B is fully reconstructed, then charmonium spectrum seen in the recoil mass w.r.t. a Kaon by two-body decays.

Br(B⁺ \rightarrow X(3872)K⁺)<2.7 × 10⁻⁴ (< 3.2 × 10⁻⁴ in PDG2016) at 90% C.L. 12

$Z_c(4430)^{\pm}$ in $\psi(2S)\pi^{\pm}$ final state

Confirmation by LHCb

Such approach will be possible to study other states with Belle II statistics only.

14

$Z_b(10610)^{\pm}$, $Z_b(10650)^{\pm}$ at $\Upsilon(10860)$ and $Z_c(3900)^{\pm}$ at $\Upsilon(4260)$

Charged states in J^{PC}=1⁻ quarkonium-like decay above open bottom/charm meson pair thresholds.

Two Z_b^{\pm} states seen in all bottomonium π^{\pm} systems at $\Upsilon(10860)$

$Z_{b}(10610)^{\pm} \rightarrow B\overline{B}^{*}, Z_{b}(10650)^{\pm} \rightarrow B^{*}\overline{B}^{*}$

Molecular picture works

B^{*} $\overline{B^{(*)}}$ dominant Br. Decays to Υ and h_b can co-exist.

J^P=1⁺ is supported by Dalitz analysis. PRD91,072003(2015).

$Z_c(3900)^{\pm}$ at Y(4260) \rightarrow J/ $\psi \pi^+ \pi^-$

Also $Z_c(4060)^{\pm}$ in $\psi(2S)\pi^{\pm}$ at Y(4360) $\rightarrow \psi(2S)\pi^{+}\pi^{-}$.

Lessons from these discoveries

- The decays of J^{PC}=1⁻ states above open charm/bottom threshold contain charged state(s).
 - $Y(4260) \rightarrow Z_{c}(3900)^{+}\pi^{-}$
 - Υ (10860)→ Z_b (10610)⁺π⁻ and Z_b (10650)⁺π⁻
- Near the meson-meson threshold, molecular state plays an important role.

 HAL QCD simulation shows Z_c(3900)[±] is likely to be a "threshold cusp". PRL117,242001(2016)

It should be a natural extension ..

Charmed baryon(-like) states

As for charm baryons

- Need to clarify "what are ordinary".
- One of the constituent quarks is heavy, the remaining light quarks may behave "di-quark"; a good degree of freedom?.
- L_1 : ρ mode, L_2 : λ mode.
- Still limited knowledge about excited states → need to visit.
- Also think about possible hunting for an exotic.

Observation of excited states

PRD89,052003(2014)

PRD94,032002(2016)

Both "charm baryon + light hadron" and "charm meson + baryon" modes being visited, very important input for theories. Determination of J^P needs more data.

Pentaquark search in Λ_c decay

arXiv:1707.00089 to appear on PRD

Challenges with higher statistics

Search for partner states

For example, in Z_b case,

• Partners may decay into χ_{bJ} (PRD86,014004(2012)).

-
$$Z_b \rightarrow \chi_{bJ} \pi$$
, $Z_{b0} \rightarrow \chi_{bJ} \gamma$

 Br(χ_{bJ}→ Υ (1,2,3S)γ) and γ efficiency are multiplied, signal yield may be one order of magnitude lower.

Higher statistics needed.

• Determination of quantum numbers

Summary

- Molecular picture plays important role near the threshold.
 - X(3872) : D⁰ D^{*0} and mixing with $\chi_{c1}(2P)$.
 - $Z_{b}(10610)^{\pm}$: B $\overline{B^{*}}$, $Z_{b}(10650)^{\pm}$: B* $\overline{B^{*}}$
 - − Zc(3900)[±] : Cusp due to $D\overline{D^*} \neq J/\psi \pi$ (and $\eta_c \pi$) transition according to the HAL QCD calculation.
- Activities to be extended to charm baryon(-like) system.
 - Started to identify excited states in different decay modes.
 - Pentaquark search in Λ_c decay performed.
- Need more data; mission at SuperKEKB/Belle II
 - For partner searches because of anticipated decay modes.
 - For determination of quantum numbers.
 - Argand diagram approach only possible with Belle II statistics.