

Hadron Physics with ALICE at the LHC Lee Barnby,

Department of Electronics, Computing and Mathematics, University of Derby on behalf of the ALICE Collaboration

International Conference on Exotic Atoms and Related Topics, Vienna | 14 September 2017

ALICE Physics Programme

- Characterize the quark gluon plasma, a deconfined state of matter at high temperatures
- Formed in heavy-ion collisions at the LHC Temperature of the order 10^{12} K or ~1 GeV
- (Almost) all observations rely on the detection of final state hadrons
 - i.e. pions, kaons, protons, hyperons ...

A Pb-Pb collision

Over 2000 particles can leave tracks in the detector

Schematic of the collision evolution

ALICE Detector

ALICE Particle Identification

- In TPC gas, energy loss Time of flight vs vs momentum
- momentum

Hadron Physics

- How and where can ALICE contribute to hadron physics?
- Final hadronic yields described by a statistical model with minimal parameters
 - -includes also light nuclei

Thermal model

- Model(s) describe hadron yields over several orders of magnitude
- T ≅ 156 MeV
- Deviations typically less than 2σ and/or 20%

Hadron Physics

- How and where can ALICE contribute to hadron physics?
- Final hadronic yields described by a statistical model with minimal parameters

 –includes also light nuclei
- 'Factory' for antimatter and hypernuclei
- Hadron phase with many hadronic interactions

A Large Ion Collider Experiment

LHC Heavy-ion collisions as an anti-matter and exotic hadron factory

of DERBY

Nuclei and anti-nuclei detection

Nuclei production – momentum dependence

ALI-PREL-130973

- Both d and ³He transverse momentum spectra measured for different centrality (system size)
- Shows that they participate in collective dynamics

IIVERSITY

of DERBY

Nuclei production – mass dependence

- Production follow an exponential decrease
 - Predicted by simple thermal model
- In Pb-Pb collisions 'penalty factor' for adding one baryon is ~300 – In p-Pb ~600

Mass Difference between light nuclei and anti-nuclei

$$\frac{\Delta\mu}{\mu} = [-1.2 \pm 0.9 \text{ (stat.)} \pm 1.0 \text{ (syst.)}] \times 10^{-3} \quad {}^{3}\text{He-} \, {}^{3}\overline{\text{He}} \\ \frac{\Delta\mu}{\mu} = [0.9 \pm 0.5 \text{ (stat.)} \pm 1.4 \text{ (syst.)}] \times 10^{-4} \qquad \text{d-}\overline{\text{d}}$$

- Highest precision direct measurements of mass differences in the nuclei sector
- One to two orders of magnitude improvement over the results from 40+ years ago

Nature Phys. 11 (2015) 811

Mass Difference between light nuclei and anti-nuclei ALI

Nature Phys. 11 (2015) 811

CPT Experimental Tests

ALI-PUB-103393

ALICE-PUBLIC-2015-002

- Comparison of experimental limits for different possible CPT violating sectors
 - Additional tests since 2015 include antihydrogen charge and 1s-2s transition

Entries/(2.5 MeV/ c^2)

Lightest hypernucleus: pnA

Reconstruct weak decay with displaced vertex

- 130±50 keV

Data

□ Background

-Combined Fit

 $\frac{3}{\pi}\overline{H} \rightarrow {}^{3}\overline{He} + \pi^{+}$

3.01 3.02 3.03 3.04

ALICE

Hypertriton model comparison

ALI-PUB-105154

- Branching ratio (B.R.) not so well determined
- Shows yield ×
 B.R. vs B.R.
 around preferred
 value of 25%
- Equilibrium model with T=156 MeV gives consistent description

Phys. Lett. B 754 (2016) 360-372

Hypertriton lifetime

- New 2015 Pb-Pb data
- Two methods for estimation
- Most accurate lifetime determination to date

Hypertriton lifetime

ALI-PREL-130195

ALI-PREL-130195

- World average unexpectedly below the free Λ lifetime
- Further improvements on precision are possible in future

Strange di-baryon searches

$$(\overline{\Lambda n})_b \to \overline{d} + \pi^+$$

Strange di-baryon searches

- Comparison of limit to predicted yields
 × B.R. from thermal model
- Only very small
 B.R. values are
 not ruled out
- Or production is not thermal

Phys. Lett. B 752 (2016) 267-277

A Large Ion Collider Experiment

The hadronic phase

ALICE | EXA 2017 | 2017/9/14 | Lee Barnby 23

Evidence for hadronic phase

 Factor 2 reduction in K*(892)/K ratio from pp to central Pb-Pb collisions

 Evidence for scattering of π and K decay products

Evidence for hadronic phase

- Factor 2 reduction in Λ*(1520)/ Λ ratio from pp to central Pb-Pb collisions
- Evidence for scattering of p and K decay products

ALI-PREL-129193

Hadron-hadron correlations - concept

 $q = p_a - p_b, \quad q = 2 \cdot k^*$

$$r = T_a - T_b$$

 $C(q) = 1 + \lambda \cos(q.r)$

- Correlation function C(q)
- R is the "HBT radius"
- Correlation function inversely proportional to R

Hadron-hadron correlations - examples

PRC 92 (2015) 054908

Experimentally

 C(q) = A(q)/B(q)
 where A is formed by pairs from same event and B background pairs from mixed events

Hadron-hadron correlations - examples

- Experimentally

 C(q) = A(q)/B(q) where A is
 formed by pairs from same
 event and B background
 pairs from mixed events
- Figure shows 3-d decomposition of q and R
- Demonstrates dependence of width on centrality (system size)
- It is possible to measure volume and lifetime of system

PRC 93 (2016) 024905

Extracting interaction parameters

- Following derivation, assuming final state interaction (FSI), by Lednicky & Lyuboshitz
 - Sov. J. Nucl. Phys. 35, 770 (1982)
- 3 parameters characterize C(q)
 - radius R
 - Scattering length f₀
 - Effective radius d₀

Non-identical kaon correlations

- Correlations sources
 - -Quantum statistics K⁰_SK⁰_S and K[±]K[±]
 - –Coulomb FSI K[±]K[±]
 - -Strong FSI $K_{S}^{0}K_{S}^{0}$ via $f_{0}(980)$ and $a_{0}(980)$ resonances
- What about K⁰_SK[±] pairs?
 - -Only strong FSI and **only** a₀ has isospin=1
 - -Possibility to study a₀
 - -Fits to data using a₀ FSI parameterization

arXiv:1705.04929

Baryon-(anti)baryon correlations

- Multiplicity of p, Λ and their antiparticles permit correlation studies
- Three correlations functions formed as b—anti-b are combined
- This is an example for one centrality interval at one centre-of-mass energy

of DERBY

Baryon correlations - extracted parameters

- Interaction parameters extracted from simultaneous fits to correlation functions in different centralities and energies
 - R will vary but interaction parameters have to be common
- Results favour slightly repulsive interaction between baryons and antibaryons

Baryon correlations - extracted parameters

- *d*₀ vs Re(*f*₀)
 - Comparison to other
 experimental results and to model
- $Im(f_0)$ vs $Re(f_0)$ - Comparison to
 - experiment

Baryon-meson correlation (example)

- Can learn about Λ-K interactions too
- All combinations of Λ , anti- Λ and K⁺, K⁻, K⁰_S available

Outlook and conclusion

- ALICE has demonstrated ability to use highenergy collisions to make some unique measurements in
 - Properties of exotic hadrons
 - Constraining matter—anti-matter differences
 - Measuring hadron-hadron interaction properties
- Many of these became feasible, or were much improved, during LHC Run 2 (2015-present)
- Expect further progress in Run 3 (2020-) when ALICE will be upgraded to record up to 100 times more data!

A Large Ion Collider Experiment

Stay tuned and thank you

ALICE | EXA 2017 | 2017/9/14 | Lee Barnby 36