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Revival of Antinucleon-nucleon physics

Near-threshold enhancement in the p̄p invariant-mass spectrum:
J/ψ → γp̄p → BES collaboration (2003, 2012)
B+ → K +p̄p → BaBar collaboration (2005)
e+e− → p̄p → FENICE (1998), BaBar (2006, 2013)
(p̄p → e+e− → PS170 (1994))

⇒ new resonances, p̄p bound states, exotic glueball states ?

Facility for Antiproton and Ion Research (FAIR)

PANDA Project
Study of the interactions between antiprotons and fixed
target protons and nuclei in the momentum range of
1.5-15 GeV/c using the high energy storage ring HESR
PAX Collaboration
experiments with a polarized antiproton beam
transversity distribution of the valence quarks in the proton
N̄N double-spin observables
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N̄N partial-wave analysis

R. Timmermans et al., PRC 50 (1994) 48

use a meson-exchange potential for the long-range part

apply a strong absorption at short distances (boundary condition) in each
individual partial wave (≈ 1.2 fm)

30 parameters, fitted to a selection of N̄N data (3646!)

However, resulting amplitudes are not explicitly given:
no proper assessment of the uncertainties (statistical errors)

phase-shift parameters for the 1S0 and 1P1 partial waves are not pinned down accurately

D. Zhou and R. Timmermans, PRC 86 (2012) 044003

use now potential where the long-range part is fixed from chiral EFT (N2LO)

somewhat larger number of N̄N data (3749!)

now, resulting amplitudes and phase shifts are given!

lowest momentum: plab = 100 MeV/c (Tlab = 5.3 MeV)

highest total angular momentum: J = 4
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N̄N PWA: p̄p → p̄p
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FIG. 5. (Color online) Differential cross sections and analyzing powers for elastic scattering as

function of angle in the center-of-mass system. The PWA result is given by the drawn red line

and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Sakamoto et

al. [59] χ2
min = 39.2 for 38 points dσ/dΩ; for Kunne et al. [70, 71] χ2

min = 25.1 for 26 points Ay; for

Eisenhandler et al. [81] χ2
min = 94.5 for 88 points dσ/dΩ; for Bertini et al. [83] χ2

min = 20.8 for 32

points Ay.

strong. The dominance of the tensor force is seen in particular in the charge-exchange

pp → nn reaction. For low energies of the final-state nn system the strong tensor force leads

to large cross sections for the transitions ℓ(nn) = ℓ(pp) − 2, in particular 3D1 → 3S1 and

3F2 → 3P2. This is similar to the strangeness-exchange reaction pp → ΛΛ, where these off-

diagonal tensor-force transitions due to K(494) and K∗(892) exchange dominate the cross

section in the ΛΛ threshold region [43, 44]. For these transitions, there is a large overlap

between the wave functions of the initial pp state and the final nn or ΛΛ state [44] at low

energy. The contributions from the spin-triplet states are much larger than the contributions

from the spin-singlet states, especially for pp → nn. The total annihilation cross section is

29
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N̄N PWA: p̄p → n̄n
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FIG. 9. (Color online) Differential cross sections and analyzing powers for charge-exchange scat-

tering as function of angle in the center-of-mass system. The PWA result is given by the drawn red

line and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Ahmidouch

et al. [72] χ2
min = 12.7 for 12 points dσ/dΩ at backward angles, χ2

min = 1.0 for 2 points dσ/dΩ at

forward angles; for Birsa et al. [73] χ2
min = 23.3 for 22 points Ay.

determined by the accuracy of the data. For the analyzing powers, on the other hand,

the theoretical uncertainties are in general smaller than the errors of the data points. The

theoretical uncertainty is very small for forward angles. For backward angles, where there

are no data available, this uncertainty increases. Fig. 8 shows the very limited data available

for the depolarization Dyy for elastic scattering at 679, 783, and 886 MeV/c. There are only

a few data points in the backward hemisphere and the data points have large error bars.

In this case, the theoretical uncertainty for the PWA prediction is much smaller than these

error bars, which implies that there is little new information in these data and that the fit

would not change significantly if they were left out of the fit. The theoretical uncertainty is

again very small for forward angles.

Figs. 9, 10, 11, and 12 show the differential cross sections dσ/dΩ and the analyzing

powers Ay for charge-exchange scattering pp → nn at 546, 656, 767, and 875 MeV/c,

respectively. Like for the elastic case, one observes that, in general, the uncertainty on

the PWA prediction for the differential cross sections is determined by the accuracy of the

data. For the analyzing powers, on the other hand, the theoretical uncertainties are in

general smaller than the errors of the data points. For some of the differential cross-section

measurements, we introduced different normalization parameters for the data in the forward

32
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FIG. 10. (Color online) Differential cross sections and analyzing powers for charge-exchange scat-

tering as function of angle in the center-of-mass system. The PWA result is given by the drawn red

line and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Ahmidouch

et al. [72] χ2
min = 12.9 for 10 points dσ/dΩ at backward angles, χ2

min = 14.6 for 7 points dσ/dΩ at

forward angles; for Birsa et al. [78] χ2
min = 11.2 for 17 points Ay; for Birsa et al. [73] χ2

min = 23.5

for 21 points Ay.

and in the backward hemisphere, which were taken with different detectors. The charge-

exchange differential cross section is highly anisotropic, because of the contributions of many,

high-ℓ partial waves. It has a “spike” at the most forward angles and it is flat at backward

angles. It exhibits a very typical dip-bump structure at forward angles, which is due to the

interference of the OPE interaction with a background due to short-range interactions [91].

The precise form of this structure evolves rapidly as function of energy, from a rather flat

plateau structure at 546 MeV/c to a pronounced dip-bump structure at 875 MeV/c. The

structure was measured accurately at 601 MeV/c by the PS206 experiment at the end of

the LEAR era [76, 77]. The high-quality charge-exchange differential cross sections from

Ref. [77] are shown in Fig. 13. At the time of Ref. [23], only the data at 693 MeV/c shown

in Fig. 13 were available [78], but these differential cross sections did not pin down the

dip-bump structure. The PWA of Ref. [23] predicted a more pronounced structure for this

data set.

In Fig. 14 the few data sets available for the depolarization Dyy at 546 and 875 MeV/c

and the spin transfer Kyy at 875 MeV/c in charge-exchange scattering are shown. The data

points have large error bars, and also in this case the theoretical uncertainty for the PWA

33
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The N̄N interaction

✫✪
✬✩

N N

N N

V NN

❄

✻

G-parity

mesons

NN

N̄N +✫✪
✬✩N̄ N

N̄ N

✫✪
✬✩

N̄ N

V N̄N
el V N̄N

ann
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Traditional approach: meson-exchange

I) V N̄N
el ... derived from an NN potential via G-parity

(Charge conjugation plus 180o rotation around the y axis in isospin space)
⇒

V N̄N (π, ω) = −V NN (π, ω) − odd G− parity

V N̄N (σ, ρ) = +V NN (σ, ρ) − even G− parity

...

II) V N̄N
ann

employ a phenomenological optical potential, e.g.

Vopt (r) = (U0 + iW0) e−r2/(2a2)

with parameters U0, W0, a fixed by a fit to N̄N data

examples: Dover/Richard (1980,1982), Paris (1982,...,2009), Nijmegen (1984),
Jülich (1991,1995), ...
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Chiral Effective Field Theory

S. Weinberg, Physica 96A (1979) 327; PLB 251 (1990) 288

Respect/exploit symmetries of the underlying QCD

Different scales: Separation of low and high energy dynamics
• low-energy dynamics is described in terms
of the relevant degrees of freedom (e.g. pions)
• high-energy dynamics remains unresolved

→ absorbed into contact terms

Power counting
Expand interaction in powers Qn = (q/Λ)n, n = 0, 1, 2, ...
q ... soft scale (nucleon three-momentum, pion four-momentum, pion
mass)
Λ ... hard scale (≈ 1 GeV ... mρ, MN )
⇒ systematic improvement of results by going to higher order (power)
⇒ estimation of theoretical uncertainty

expected to work for q < Λ
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NN in chiral effective field theory

structure of the N̄N interaction is practically identical to the one for NN scattering, the

potential given in Ref. [38] can be adapted straightforwardly for the N̄N case. However,

for the ease of the reader and also for defining our potential uniquely we summarize the

essential features below and we also provide explicit expressions in Appendix A.

LO

Q0

NLO

Q2

N2LO

Q3

N3LO

Q4

Figure 1. Relevant diagrams up-to-and-including N3LO. Solid and dashed lines denote antinucle-

ons/nucleons and pions, respectively. The square and diamond symbolize contact vertices with two

and four derivatives, respectively. The dots denote a leading πN vertex, while the filled circle and

the ring symbolize subleading and sub-subleading πN vertices, respectively. Q denotes a small pa-

rameter (external momentum and/or pion mass). From the iterated diagrams at N2LO and N3LO,

only the irreducible contribution is part of the potential.

2.1 Pion-exchange contributions

The one-pion exchange potential is given by

V1π(q) =

(
gA
2Fπ

)2 (
1− p2 + p′2

2m2

)
τ 1 · τ 2

σ1 · qσ2 · q
q2 +M2

π

, (2.1)

where q = p′−p is the transferred momentum defined in terms of the final (p′) and initial

(p) center-of-mass momenta of the baryons (nucleon or antinucleon). Mπ andm denote the

– 4 –

• 4N contact terms involve low-energy constants (LECs) ... parameterize unresolved short-range physics

⇒ need to be fixed by fit to experiments
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NN in chiral effective field theory 25
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FIG. 9: Estimated theoretical uncertainty of the np phase shifts at NLO, N2LO and N3LO based on the cutoff of R = 0.9 fm
in comparison with the NPWA [41] (solid dots) and the GWU single-energy np partial wave analysis [89] (open triangles). The
light- (color online: yellow), medium- (color-online: green) and dark- (color-online: blue) shaded bands depict the estimated
theoretical uncertainties at NLO, N2LO and N3LO, as explained in the text. Only those partial waves are shown which have
been used in the fits at N3LO.

R = 1.2 fm. In summary, we find that the suggested approach for error estimation is more reliable than the standard
procedure by means of cutoff bands and, in addition, has the advantage of being applicable for a fixed value of R.
This allows one to avoid the artificial increase of the theoretical uncertainty due to cutoff artefacts, the issue which
is especially relevant at high energies where the chiral expansion converges slower. The issue with using the cutoff
bands is expected to become particularly important at next-to-next-to-next-to-next-to-leading order (N4LO) in the
chiral expansion. In particular, we expect that the residual cutoff dependence at N4LO will be comparable to that
at N3LO, and that it will significantly overestimate the real N4LO uncertainty at higher energies in a close analogy
to what is observed at N2LO. Last but not least, the ability to carry out independent calculations with quantified
uncertainties also provides a useful consistency check.

Next, we show in Fig. 9 the estimated uncertainty of the S-, P- and D-wave phase shifts and the mixing angles ε1 and
ε2 at NLO, N2LO and N3LO based on R = 0.9 fm. The various bands result by adding/subtracting the estimated
theoretical uncertainty, ±∆δ(Elab) and ±∆ε(Elab), to/from the results shown in Fig. 3. In a similar way, we also
looked at selected neutron-proton scattering observables at different energies shown in Figs. 10-13. For the lowest
considered energy of Elab = 50 MeV, we show, in addition to the results using R = 0.9 fm, also our predictions for the
softest cutoff choice of R = 1.2 fm. While the uncertainty is clearly increased, the results actually still appear to be
rather accurate at this energy. Our results agree with the ones of the NPWA for all considered observables and energies
indicating that the employed way to estimate the uncertainties is quite reliable. Generally, we find that chiral EFT
at N3LO allows for very accurate results at energies below Elab ∼ 100 MeV and still provides accurate description of
the data at energies of the order of Elab ∼ 200 MeV. These findings are particularly promising for the ongoing studies
of the three-nucleon force whose contributions to nucleon-deuteron scattering observables are believed to increase at
energies above EN, lab ∼ 100 MeV. It would be interesting to perform a similar analysis of nucleon-deuteron scattering
data based on the improved chiral NN potentials in order to see whether accurate predictions are to be expected at
such energies at N3LO. Work along these lines is in progress.

Finally, we emphasize that our results depend little on the specific choice of the regulator function. In order to

E. Epelbaum, H. Krebs, Ulf-G. Meißner (EKM), EPJA 51 (2015) 53

—— LO, —— NLO, —— N3LO

Johann Haidenbauer Antinucleon-nucleon interaction



The N̄N interaction in chiral EFT

V NN = V1π + V2π + V3π + ...+ Vcont

V N̄N
el = −V1π + V2π −V3π + ...+ Vcont

V N̄N
ann =

∑
X V N̄N→X X =̂ π, 2π, 3π, 4π, ...

• V1π, V2π, ... can be taken over from a chiral EFT study of the NN
interaction
⇒ starting point: “improved chiral NN potential up to N3LO” by

Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53

• Vcont has the same structure as in NN. However, the LECs have to
be determined by a fit to N̄N data (phase shifts, inelasticites)!
no Pauli principle→ more partial waves, more contact terms

• V N̄N
ann has no counterpart in NN

• Ling-Yun Dai, JH, U.-G. Meißner, JHEP 07 (2017) 078 (N3LO)
Xian-Wei Kang, JH, U.-G. Meißner, JHEP 02 (2014) 113 (N2LO)
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Annihilation potential

experimental information:
• annihilation occurs dominantly into 4 to 6 pions (two-body channels like
p̄p → π+π−, ρ±π∓ etc. contribute in the order of ≈ 1%)
• thresholds: for 5 pions: ≈ 700 MeV for N̄N: 1878 MeV
• produced pions have large momenta→ annihilation process depends very little
on energy
• annihilation is a statistical process: properties of the individual particles (mass,
quantum numbers) do not matter
phenomenlogical models: bulk properties of annihilation can be described rather
well by simple energy-independent optical potentials
range associated with annihilation is around 1 fm or less
→ short-distance physics

⇒ describe annihilation in the same way as the short-distance physics in V N̄N
el ,

i.e. by contact terms (LECs)
⇒ describe annihilation by a few effective (two-body) annihilation channels

(unitarity is preserved!)

V N̄N = V N̄N
el + V N̄N

ann;eff ; V N̄N
ann;eff =

∑
X

V N̄N→X G0
X V X→N̄N

V N̄N→X (pN̄N , pX ) ≈ pL
N̄N (a + b p2

N̄N + ...); pX ≈ const.
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Contributions of Vcont for N̄N up to N3LO

V N̄N
el

V L=0 = C̃α + Cα(p2 + p′2) + D1
αp2p′2 + D2

α(p4 + p′4)

V L=1 = Cβ p p′ + Dβ p p′(p2 + p′2)

V L=2 = Dγ p2p′2

C̃i ... LO LECs [4], Ci ... NLO LECs [+14], Di ... N3LO LECs [+30], p = |p |; p′ = |p ′|

V N̄N
ann;eff

V L=0
ann = −i (C̃a

α + Ca
αp2 + Da

αp4) (C̃a
α + Ca

αp′2 + Da
αp′4)

V L=1
ann = −i (Ca

βp + Da
βp3) (Ca

βp′ + Da
βp′3)

V L=2
ann = −i (Da

γ )2p2p′2

V L=3
ann = −i (Da

δ)2p3p′3

α ... 1S0 and 3S1
β ... 3P0, 1P1, and 3P1
γ ... 1D2, 3D2 and 3D3
δ ... 1F3, 3F3 and 3F4

• unitarity condition: higher powers than what follows from Weinberg power counting appear!

• same number of contact terms (LECs)
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regularized Lippmann-Schwinger equation

T L′L(p′, p) = V L′L(p′, p) +
∑
L′′

∫ ∞
0

dp′′p′′2

(2π)3

V L′L′′(p′, p′′) T L′′L(p′′, p)

2Ep − 2Ep′′ + iη

• employ the regularization scheme of EKM (EPJA 51 (2015) 53)
⇒ local regulator for pion exchange, nonlocal regulator for contact terms:

Vnπ(q)→ Vnπ(r)× fR(r)→ V reg
nπ (q); (~q = ~p′ − ~p)

Vcont = V (p, p′)→ V (p, p′)× fΛ(p, p′) = V reg
cont

(fR (r) =
[
1− exp(−r2/R2)

]6
; fΛ(p, p′) = exp(−(p2 + p′2)/Λ2); R = 0.8-1.2 fm; Λ = 2/R)

• Fit to phase shifts and inelasticity parameters in the isospin basis

• Calculation of observables is done in particle basis:
? Coulomb interaction in the p̄p channel is included
? the physical masses of p and n are used

n̄n channels opens at plab = 98.7 MeV/c (Tlab = 5.18 MeV/c)
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N̄N phase shifts (N3LO)
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Figure 2: Real and imaginary parts of variousN̄N phase shifts at N3LO for cutoffs R= 0.8− 1.2 fm. The filled circles represent the solution of the
p̄p PWA [32].
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N̄N phase shifts
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Figure 2: Real and imaginary parts of variousN̄N phase shifts at N3LO for cutoffs R= 0.8− 1.2 fm. The filled circles represent the solution of the
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Uncertainty

Uncertainty for a given observable X(p):
(Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53)

estimate uncertainty via

• the expected size of higher-order corrections
• the actual size of higher-order corrections

∆XLO = Q2|XLO | (XNLO ≈ Q2XLO )

∆XNLO = max
(

Q3|XLO |,Q1|δXNLO |
)

; δXNLO = XNLO−XLO

∆XN2LO = max
(

Q4|XLO |,Q2|δXNLO |,Q1|δXN2LO |
)

; δXN2LO = XN2LO−XNLO

∆XN3LO = max
(

Q5|XLO |,Q3|δXNLO |,Q2|δXN2LO |,Q1|δXN3LO |
)

; δXN3LO = XN3LO−XN2LO

expansion parameter Q is defined by

Q = max

(
p

Λb
,

mπ

Λb

)
; p ... N̄N on− shell momentum

Λb ... breakdown scale→ Λb = 500− 600 MeV [for R = 0.8− 1.2 fm] (EKM, 2015)
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Figure 6: Real and imaginary parts of various̄NN phase shifts for the potential with cutoff R = 0.9 fm. Results at N3LO (black/solid line),
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Figure 6: Real and imaginary parts of various̄NN phase shifts for the potential with cutoff R = 0.9 fm. Results at N3LO (black/solid line),
N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO (medium/cyan), and NLO
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p̄p integrated cross sections

4.2. Observables
In our first study ofN̄N scattering within chiral EFT [42] we focused on the phase shifts and inelasticities. Ob-

servables were not considered. One reason for this was that,at that time, our computrt code was only suitable for
calculations in the isospin basis. A sensible calculation of observables, specifically at low energies where chiral EFT
should work best, has to be done in the particle basis becausethe Coulomb interaction in the ¯pp system has to be
taken into account and also the mass difference between proton and neutron. The latter leads to different physical
thresholds for the ¯pp andn̄nchannels which has a strong impact on the reaction amplitudeclose to those thresholds.

Another reason is related directly to the dynamics ofN̄N scattering, specifically to the presence of annihilation
processes. Annihilation occurs predominantly at short distances and yields a reduction of the magnitude of theS-
wave amplitudes. Because of that, higher partial waves start to become important at much lower energies as compared
to what one knows from theNN interaction [3]. Thus, already at rather moderate energiesa realistic description of
higher partial waves, in particular of theP- as well asD-waves, is required for a meaningful confrontation of the
computed amplitudes with scattering data.
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Figure 9: Total (σtot) and integrated elastic (σel), charge-exchange (σcex), and annihilation (σann) cross sections for ¯pp scattering. Results at
N3LO (black/solid line), N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO
(medium/cyan), and NLO (light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32]. Data are taken from Refs.
[62, 63, 64, 65] (σtot), [66, 67, 68] (σann), [69, 70, 71] (σcex), and [72, 73, 74] (σel).

In the present paper we extended our chiral EFTN̄N potential to N3LO. At that order the first LECs in the
D-waves appear, cf. Eq. (15), and can be used to improve substantially the reproduction of the corresponding partial-
wave amplitudes of thēNN PWA, cf. Figs. 6 and 7. Thus, it is now timely to perform also a calculation of observables
and compare those directly with measurements. Integrated cross sections are shown in Fig. 9. Results are provided
for the total reaction cross section, for the total annihilation cross section, and for the integrated elastic ( ¯pp→ p̄p)
and charge-exchange ( ¯pp → n̄n) cross sections. Similar to the presentation of the phase shifts before, we include
curves for the NLO (dotted lines), N2LO (dashed lines), and N3LO (solid lines) results and indicate the corresponding
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p̄p → p̄p
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Figure 10: Differential cross sections, analyzing powers and spin correlation parametersDnn for p̄p elastic scattering. For notations, see Fig. 9.
The red/dash-double dotted line represents the result of the PWA [32]. Data are taken from Refs. [75, 67, 76, 73, 77, 78, 79, 80] (differential cross
sections), [81, 82, 83] (analyzing powers), and [84] (Dnn).
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p̄p → n̄n
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data forAon are for 546 and 656 MeV/c, respectively.

20

Johann Haidenbauer Antinucleon-nucleon interaction



Hadronic level shifts in hyperfine states of p̄H

Deser-Trueman formula:

∆ES + i
ΓS

2
= − 4

Mpr3
B

asc
S

(
1− asc

S

rB
β

)

∆EP + i
ΓP

2
= − 3

8Mpr5
B

asc
P

rB ... Bohr radius ... 57.6 fm; β = 2(1−Ψ(1)) ≈ 3.1544
asc ... Coulomb-distorted p̄p scattering length

Carbonell, Richard, Wycech, ZPA 343 (1992) 343:
works well once Coulomb and p-n mass difference is taken into account

NOTE:

different sign conventions for scattering lengths in N̄N and K̄ N!

∆E < 0⇔ repulsive shift
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Hadronic level shifts in hyperfine states of p̄H

NLO N2LO N3LO N2LO∗ Experiment

E1S0
(eV) −448 −446 −443 −436 −440(75) [1]

−740(150) [2]
Γ1S0

(eV) 1155 1183 1171 1174 1200(250) [1]

1600(400) [2]
E3S1

(eV) −742 −766 −770 −756 −785(35) [1]

−850(42) [3]
Γ3S1

(eV) 1106 1136 1161 1120 940(80) [1]

770(150) [3]
E3P0

(meV) 17 12 8 16 139(28) [4]

Γ3P0
(meV) 194 195 188 169 120(25) [4]

E1S (eV) −670 −688 −690 −676 −721(14) [1]
Γ1S (eV) 1118 1148 1164 1134 1097(42) [1]

E2P (meV) 1.3 2.8 4.7 2.3 15(20) [4]
Γ2P (meV) 36.2 37.4 37.9 27 38.0(2.8) [4]

[1] Augsburger et al., NPA 658 (1999) 149; [2] Ziegler et al., PLB 206 (1988) 151;
[3] Heitlinger et al., ZPA 342 (1992) 359; [4] Gotta et al., NPA 660 (1999) 283

∗ Xian-Wei Kang et al., JHEP 02 (2014) 113

Johann Haidenbauer Antinucleon-nucleon interaction



Evidence for N̄N bound states?

EB , MR (MeV) N2LO [1] El-Bennich [2] Entem [3] Milstein [4]
11S0 - -4.8-i 26 - 22-i 33
31S0 -37-i 47∗ - - -
13S1 +(5.6 · · · 7.7)− i (49.2 · · · 60.5) - - -
11P1 - 1877±i 13 - -
13P0 −(3.7 · · · 0.2)− i (22.0 · · · 26.4) 1876±i 5 1895±i 17 -
33P0 - 1871±i 11 - -
13P1 - 1872±i 10 - -
33P1 - -4.5-i 9 - -

Notation: (2I+1)(2S+1)LJ Mp + Mp̄ = 1876.574 MeV

[1] Xian-Wei Kang et al., JHEP 02 (2014) 113; ∗ needed for J/ψ → γp̄p
[2] B. El-Bennich et al., PRC 79 (2009) 054001
[3] D.R. Entem & F. Fernández, PRC 73 (2006) 045214
[4] A.I. Milstein & S.G. Salnikov, NPA 966 (2017) 54

BES 2005; BESIII 2011,2016: X(1835) (JPC = 0−+, I = 0)

seen in J/ψ → γπ+π−η′: MR = 1836.5± 3+5.6
−2.1 MeV, Γ = 190± 9+38

−36 MeV

evidence (?) in J/ψ → γp̄p: MR = 1832+19
−5

+18
−17 MeV, Γ< 76 MeV (90 % C.L.)
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p̄p in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N2LO)

bands represent cutoff variations!
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Summary & Outlook

N̄N interaction at N3LO in chiral effective field theory

new local regularization scheme is used for pion-exchange contributions

new uncertainty estimate suggested by Epelbaum, Krebs, Meißner

excellent description of N̄N amplitudes is achieved

nice agreement with p̄p observables for Tlab ≤ 250 MeV is achieved

predictions are made for low energies (Tlab ≤ 5.3 MeV):
• low-energy annihilation cross section
• level shifts of antiprotonic atoms

⇒ approach works not only for NN but also rather well for N̄N

try our own PWA

analyze p̄p → ππ, K̄ K channels

consider p̄d scattering

new data N̄N data?
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p̄p annihilation cross section

experimental values, with the only exception being the level shift in the3P0 partial wave.

Table 4: Hadronic shifts and broadenings in hyperfine statesof p̄H for the chiral potentials withR= 0.9 fm. For comparison N2LO predictions of
our previous chiral potential are included, based on the cutoff combination (Λ, Λ̃) = (450,500) MeV [42]. The experimental information is taken
from Refs. [91, 93, 92, 94].

NLO N2LO N3LO N2LO [42] Experiment

E1S0
(eV) −448 −446 −443 −436 −440(75) [92]

−740(150) [91]

Γ1S0
(eV) 1155 1183 1171 1174 1200(250) [92]

1600(400) [91]

E3S1
(eV) −742 −766 −770 −756 −785(35) [92]

−850(42) [93]

Γ3S1
(eV) 1106 1136 1161 1120 940(80) [92]

770(150) [93]

E3P0
(meV) 17 12 8 16 139(28) [94]

Γ3P0
(meV) 194 195 188 169 120(25) [94]

E1S (eV) −670 −688 −690 −676 −721(14) [92]

Γ1S (eV) 1118 1148 1164 1134 1097(42) [92]

E2P (meV) 1.3 2.8 4.7 2.3 15(20) [94]

Γ2P (meV) 36.2 37.4 37.9 27 38.0(2.8) [94]
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Figure 14:p̄p annihilation cross section multiplied by the velocityβ of the incoming ¯p. For notations, see Fig. 9. The results of the PWA [32] are
indicated by circles. Data are taken from [98, 99, 100, 101].

There are measurements of the ¯pp annihilation cross section at very low energy [98, 99, 100, 101]. Also those
experiments were not taken into account in the PWA [32]. We present our predictions for this observable in Fig. 14,
where the annihilation cross section multiplied by the velocity β of the incoming ¯p is shown. Results based on the
amplitudes of the PWA are also included (filled circles). An interesting aspects of those data is that one can see the
anomalous behavior of the reaction cross section near threshold due to the presence of the attractive Coulomb force

23

β =
vp̄
c

• anomalous threshold behavior due to attractive Coulomb interaction
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n̄p cross sections

[102]. Usually the cross sections for exothermic reactionsbehave like 1/β so thatβσann is then practically constant,
cf. Fig. 14 forplab ≈ 100−300 MeV/c. However, the Coulomb attraction modifies that to a 1/β2 behavior for energies
very close to the threshold.
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Figure 15: Total (σtot) and integrated annihilation (σann) cross sections for ¯npscattering. For notations, see Fig. 9. Data are taken from Refs. [103,
104, 105].

Finally, for illustration we show our predictions for ¯np scattering, see Fig. 15. The ¯np system is a pure isospin
I = 1 state so that one can test theI = 1 component of theN̄N amplitude independently. Note that the PWA
results displayed in Fig. 15 include again partial-wave amplitudes from our N3LO interaction forJ ≥ 5. However, for
integrated cross sections the contributions of those higher partial waves is really very small, even atplab = 800 MeV/c.

6. Summary

In Ref. [38] a new generation ofNN potentials derived in the framework of chiral effective field theory was pre-
sented. In that work a new local regularization scheme was introduced and applied to the pion-exchange contributions
of theNN force. Furthermore, an alternative scheme for estimating the uncertainty was proposed that no longer de-
pends on a variation of the cutoffs. In the present paper we adopted their suggestions and applied them in a study of
the N̄N interaction. Specifically, āNN potential has been derived up to N3LO in the perturbative expansion, thereby
extending a previous work by our group that had considered the N̄N force up to N2LO [42]. Like before, the pertinent
low-energy constants have been fixed by a fit to the phase shifts and inelasticities provided by a recently published
phase-shift analysis of ¯ppscattering data [32].

We could show that an excellent reproduction of theN̄N amplitudes can be achieved at N3LO. Indeed, in many
aspects the quality of the description is comparable to thatone has found in case of theNN interaction at the same
order [38]. To be more specific, for theS-waves excellent agreement with the phase shifts and inelasticities of [32] has
been obtained up to laboratory energies of about 300 MeV, i.e. over the whole energy range considered. The same is
also the case for mostP-waves. Even many of theD-waves are described well up to 200 MeV or beyond. Because of
the overall quality in the reproduction of the individual partial waves there is also a nice agreement on the level ofN̄N
observables. Total and integrated elastic ( ¯pp→ p̄p) and charge-exchange ( ¯pp→ n̄n) cross sections agree well with
the PWA results up to the highest energy considered while differential observables (cross sections, analyzing powers,
etc.) are reproduced quantitatively up to 200-250 MeV. Furthermore, and equally important, in most of the considered
cases the achieved results agree with the ones based on the PWA within the estimated theoretical accuracy. Thus,
the scheme for quantifying the uncertainty suggested in Ref. [38] seems to work well and can be applied reliably to
the N̄N interaction as well. Finally, the low-energy representation of theN̄N amplitudes derived from chiral EFT
compares well with the constraints derived from the phenomenology of antiprotonic hydrogen.
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