Review of lattice results for low energy particle physics

Urs Wenger Albert Einstein Center for Fundamental Physics University of Bern

EXA 2017, 13/09/2017, Vienna, Austria

The role of (precision) flavour physics

- (Precision) Flavour physics is a key tool in exploring the Standard Model of particle physics.
- It is complementary to high-energy precision experiments
 - necessary to understand the underlying theoretical framework
 - important for the discovery of new physics beyond the SM
- Precision flavour physics requires control of hadronic effects:

The role of (precision) flavour physics

- (Precision) Flavour physics is a key tool in exploring the Standard Model of particle physics.
- It is complementary to high-energy precision experiments
 - necessary to understand the underlying theoretical framework
 - important for the discovery of new physics beyond the SM
- Precision flavour physics requires control of hadronic effects:

 Systematic, theoretical tools include χPT, sum rules, dispersion relations, lattice QCD

The role of (precision) flavour physics

- (Precision) Flavour physics is a key tool in exploring the Standard Model of particle physics.
- It is complementary to high-energy precision experiments
 - necessary to understand the underlying theoretical framework
 - important for the discovery of new physics beyond the SM
- Precision flavour physics requires control of hadronic effects:

Lattice QCD is *the* nonperturbative method for hadronic ab-initio calculations

Quantum Chromodynamics

QCD – the theory of strong interactions

$$\mathcal{L}_{\mathsf{QCD}} = ar{\psi}(\mathit{i} D - m_q) \psi - rac{1}{4} G_{\mu
u} G^{\mu
u}$$

- describes the interactions between the quarks and gluons,
- parameters are the quark masses m_q and the dimensionless gauge coupling α_s,
- ▶ in the chiral limit m_q → 0, a scale is generated through dimensional transmutation,
- all dimensionful quantities can be expressed in units of one characteristic scale, e.g. the proton mass.

QCD on the lattice

Gauge invariant lattice regularization:

discretize Euclidean space-time

Challenges for QCD on the lattice:

- Thermodynamic limit $\Rightarrow L \rightarrow \infty$
- Continuum limit $\Rightarrow a \rightarrow 0$
 - discretisation errors become negligible

• Chiral limit
$$\Rightarrow m_q \rightarrow m_q^{\text{phys}} \sim 0$$

QCD on the lattice

Gauge invariant lattice regularization:

discretize Euclidean space-time

Challenges for QCD on the lattice:

- Thermodynamic limit $\Rightarrow L \rightarrow \infty$
- Continuum limit $\Rightarrow a \rightarrow 0$
 - discretisation errors become negligible

• Chiral limit
$$\Rightarrow m_q \rightarrow m_q^{\text{phys}} \sim 0$$

We need at least L > 3 fm, a < 0.1 fm and $m_{\pi} < 200$ MeV.

Isospin breaking and electro-magnetic (QED) corrections

Huge progress over the last decade...

 \ldots thanks to algorithmic and theoretical breakthroughs & increase in computational power:

[courtesy of G. Herdoiza]

Huge progress over the last decade...

\ldots thanks to algorithmic and theoretical breakthroughs & increase in computational power:

[courtesy of G. Herdoiza]

It's not easy for a non-expert to keep the overview:

what is the 'best' current lattice value for a given quantity?

For phenomenological applications

- What is the 'best' current lattice value?
 - digging through lattice literature not easy for non-experts
 - solution: compilation of results ready-to-use
 - examples: PDG, HFAG, etc.

FLA Flavour Lattice Average	G ging Group	2016		The status	trb. don don	ative behavi	no. In International Internati		
Collaboration	Ref.	N_f	qua	1. enor	Perf	oo oo	$lpha_{\overline{ m MS}}(M_{ m Z})$	Method	Table
HPQCD 14A	[5]	2+1+1	Α	0	*	0	0.11822(74)	current two points	46
ETM 13D	[648]	2+1+1	Α	0	0		0.1196(4)(8)(16)	gluon-ghost vertex	47
ETM 12C	649	2+1+1	Α	0	0		0.1200(14)	gluon-ghost vertex	47
ETM 11D	[650]	2+1+1	Α	0	0	•	$0.1198(9)(5)(^{+0}_{-5})$	gluon-ghost vertex	47
Bazavov 14	[61]	2+1	Α	0	*	0	$0.1166(^{+12}_{-8})$	Q - \bar{Q} potential	43
Bazavov 12	[603]	2+1	Α	0	0	0	$0.1156(^{+21}_{-22})$	$Q-\bar{Q}$ potential	43
HPQCD 10	[9]	2+1	Α	0	*	0	0.1183(7)	current two points	46
HPQCD 10	[9]	2+1	Α	0	*	*	0.1184(6)	Wilson loops	45
JLQCD 10	[612]	2+1	Α				$0.1118(3)(^{+16}_{-17})$	vacuum polarization	44
PACS-CS 09A	62	2+1	Α	*	*	0	$0.118(3)^{\#}$	Schrödinger functional	42
Maltman 08	[63]	2+1	Α	0	0	*	0.1192(11)	Wilson loops	45
HPQCD 08B	[152]	2+1	Α				0.1174(12)	current two points	46
HPQCD 08A	616	2+1	Α	0	*	*	0.1183(8)	Wilson loops	45
HPQCD 05A	[615]	2+1	Α	0	0	0	0.1170(12)	Wilson loops	45

 $^{\#}$ Result with a linear continuum extrapolation in a.

FLAG: Flavour Lattice Averaging Group

- Worldwide collaboration to provide answers to
 - ▶ What is the current best lattice value for quantity X?
 - How reliable is the estimated systematic error?
- Collection of all results in a user-friendly format:

Review of lattice results concerning low-energy particle physics

August 1, 2017

Flavour Lattice Averaging Group (FLAG)

S. Aoki,¹ Y. Aoki,^{2,3*} D. Bečirević,⁴ C. Bernard,⁵ T. Blum,^{6,3} G. Colangelo,⁷ M. Della Morte,⁸

P. Dimopoulos,⁹ S. Dürr,¹⁰ H. Fukaya,¹¹ M. Golterman,¹² Steven Gottlieb,¹³ S. Hashimoto,^{14,15}

U. M. Heller,¹⁶ R. Horsley,¹⁷ A. Jüttner,¹⁸ T. Kaneko,^{14,15} L. Lellouch,¹⁹ H. Leutwyler,⁷

C.-J. D. Lin,^{20,19} V. Lubicz,^{21,22} E. Lunghi,¹³ R. Mawhinney,²³ T. Onogi,¹¹ C. Pena,²⁴

C. T. Sachrajda,¹⁸ S. R. Sharpe,²⁵ S. Simula,²² R. Sommer,²⁶ A. Vladikas,²⁷ U. Wenger,⁷ H. Wittig²⁸

FLAG: Flavour Lattice Averaging Group

- Worldwide collaboration to provide answers to
 - ▶ What is the current best lattice value for quantity X?
 - How reliable is the estimated systematic error?
- Collection of all results in a user-friendly format:

FLAG: Flavour Lattice Averaging Group

- Worldwide collaboration to provide answers to
 - ▶ What is the current best lattice value for quantity X?
 - How reliable is the estimated systematic error?
- Collection of all results in a user-friendly format:

FLAG: Flavour Lattice Averaging Group

- Worldwide collaboration to provide answers to
 - ▶ What is the current best lattice value for quantity X?
 - How reliable is the estimated systematic error?
- Collection of all results in a user-friendly format:

Similar to the efforts of the PDG...

Advisory Board:

S. Aoki, C. Bernard, M. Golterman, H. Leutwyler, C. Sachrajda

Editorial Board:

G. Colangelo, S. Hashimoto, A. Jüttner, S. Sharpe, A. Vladikas, UW

Working Groups:

- Quark masses:
- ► *V_{us}*, *V_{ud}*:
- LEC:
- ► B_K:
- ► α_s:
- f_B, f_D, B_B :
- $B, D \rightarrow H\ell\nu$:

L. Lellouch, T. Blum, V. Lubicz T. Kaneko, S. Simula, (P. Boyle) S. Dürr, H. Fukaya, U. Heller H. Wittig, P. Dimopoulos, B. Mawhinney R. Sommer, R. Horsley, T. Onogi Y. Aoki, M. Della Morte, D. Lin

D. Becirevic, S. Gottlieb, E. Lunghi, C. Pena

► 3rd ed. of review appeared July 2016 [EPJC 77 (2017) 2, arXiv:1607.00299]

Advisory Board:

S. Aoki, C. Bernard, M. Golterman, H. Leutwyler, C. Sachrajda

Editorial Board:

G. Colangelo, S. Hashimoto, A. Jüttner, S. Sharpe, A. Vladikas, UW

Working Groups:

- Quark masses:
- ► *V*_{us}, *V*_{ud}:
- LEC:
- ► B_K:
- ► α_s:
- f_B, f_D, B_B :
- $B, D \rightarrow H\ell\nu$:

- L. Lellouch, T. Blum, V. Lubicz
- T. Kaneko, S. Simula, (P. Boyle)
 - S. Dürr, H. Fukaya, U. Heller
- H. Wittig, P. Dimopoulos, B. Mawhinney
 - R. Sommer, R. Horsley, T. Onogi
 - Y. Aoki, M. Della Morte, D. Lin
- D. Becirevic, S. Gottlieb, E. Lunghi, C. Pena
- ► 3rd ed. of review appeared July 2016 [EPJC 77 (2017) 2, arXiv:1607.00299] → partly updated as of July 2017 [http://flag.unibe.ch]

Most recent updates available under http://flag.unibe.ch:

			Search	Q		
	Review of lattice results conce	erning low	energy p	article	physi	cs
Figures for download	The latest version of the complete review as of August 2017 is acc semileptonic kaon and pion decay and $ V_{tuc} $ and $ V_{uu} $, the new se July 2017 on <i>B</i> -meson decay constants, mixing parameters and for	essible here. It contains ction updated in Decer prm factors.	the new section up nber 2016 on kaon i	odated in Nove mixing, and the	mber 2016 o e new sectio	on leptonic and n updated in
Quark masses V _{ud} and V _{us} Low-energy constants Kaon mixing	In e orginal complete 2/U15/2/U15 review is still accessible here or f the links in the table of contents below. The latest figures can be downloaded in eps, pdf and png format, contribute to the FLAG averages and estimates. The downloads an The 2013/2014 review is accessible here or from EPJC.	together with a bib-file e available via the men	e sections can be d containing the bibte u in the sidebar.	ownloaded as	separate pd e calculatior	r-nies tollowing
D-meson decay constants and form factors B-meson decay constants, mixing parameters, and form factors The strong coupling α_s	Contents 1. Introduction 1. Introduction 2. Cattion policy 2. Cattion policy 3. Grant Issues 4. References 2. Catting rotation					
Navigation	3. Quark masses 4. V _{uit} and V _{us}					
RecentChanges FindPage HelpContents Trail	 Low-energy constants Kaon mixing <i>L</i>-meson decay constants and form factors <i>B</i>-meson decay constants, mixing parameters, and form factors The strong coupling α_x Glossary Marea 					
B-meson decorm	11. Notes					

What exactly does FLAG offer?

- Complete list of references
- Summary of relevant formulae and notation
- Summary of essential aspects of each calculation:
 - lattice action and number of dynamical quarks (N_f)
 - minimal value and range of quark masses
 - minimal value and range of lattice spacings
 - maximal value and range of lattice volumes
 - renormalization method (where applicable)

in a unified and easy to read manner (color code)

- Averages or estimates (if sensible)
- Lattice dictionary for non-experts (details of lattice actions, etc.)

What exactly does FLAG offer?

Some original contributions:

 thorough discussion and parametrization of electromagnetic contributions to meson masses

(and their role in the determination of quark masses)

• some new χ PT two-loop formulae

(either completely new or written in a user-friendly way)

• a thorough consistency test of lattice calculations of $f_+(0)$ and f_K/f_{π} assuming unitarity of the CKM matrix

In the future: discussion of isospin breaking/e.m. corrections where necessary

- Quality criteria rate *possibility* to control a systematic error:
 - ★ data allow for satisfactory control
 - \circ $\,$ data allow for reasonable control, but could be improved
 - unlikely to allow for reasonable control (result is dropped!)

Chiral extrapolation:

★
$$M_{\pi,\min} < 200$$
 MeV

 \circ 200 MeV $\leq M_{\pi, \min} \leq$ 400 MeV

• 400 MeV
$$< M_{\pi,\min}$$

- Continuum extrapolation:
 - ★ 3 or more lattice spacings, at least 2 below 0.1 fm
 - $\odot~~2$ or more lattice spacings, at least 1 below 0.1 fm
 - otherwise

- Finite-volume effects:
 - ★ $M_{\pi,\min}L > 4$ or at least 3 volumes
 - \circ $M_{\pi,\min}L > 3$ and at least 2 volumes
 - otherwise

- Renormalization (where applicable):
 - \star non-perturbative
 - 1-loop perturbation theory or higher
 - otherwise

- Quality criteria rate *possibility* to control a systematic error:
 - \star data allow for satisfactory control
 - data allow for reasonable control, but could be improved
 - unlikely to allow for reasonable control (result is dropped!)
- Different lattice results will be averaged, if and only if
 - no red tags
 - published [lattice proceedings not enough]
 - same number of flavours N_f

[no average of $N_f = 2$, 2 + 1 and 2 + 1 + 1 calculations]

- Quality criteria rate *possibility* to control a systematic error:
 - \star data allow for satisfactory control
 - data allow for reasonable control, but could be improved
 - unlikely to allow for reasonable control (result is dropped!)
- Different lattice results will be averaged, if and only if
 - no red tags
 - published [lattice proceedings not enough]
 - Same number of flavours N_f [no average of N_f = 2, 2 + 1 and 2 + 1 + 1 calculations]

Estimate is given if average fails to cover all uncertainties

- Quality criteria rate *possibility* to control a systematic error:
 - \star data allow for satisfactory control
 - data allow for reasonable control, but could be improved
 - unlikely to allow for reasonable control (result is dropped!)
- Different lattice results will be averaged, if and only if
 - no red tags
 - published [lattice proceedings not enough]
 - same number of flavours N_f [no average of N_f = 2, 2 + 1 and 2 + 1 + 1 calculations]
- Estimate is given if average fails to cover all uncertainties
- Colour code in figures:
 - results included in the average or estimate
 - results not included in the average but passing all criteria
 - all other results
 - FLAG average or estimate

 lattice QCD contains only the dimensionless coupling g and implicitly the lattice spacing a as parameters

• for a physical mass m or a length ξ one has

$$m = f(g) \cdot \frac{1}{a}$$
 $\xi = h(g) \cdot a$

- continuum limit reached when 1/m or $\xi \gg a$:
 - system approaches continuous PT (statistical physics)
 - in asymptotically free theories: $a \rightarrow 0$ for $g \rightarrow 0$
- physical quantities should become independent of a in the continuum limit:

$$rac{d}{da}m=0$$
 ($a
ightarrow 0$) \iff renormalizability

this yields a differential equation for f(g):

$$-f(g)+f'(g)\left(\frac{d}{da}g\right)=0$$

where

$$\beta(g) \equiv a \frac{d}{da}g = -b_0g^3 - b_1g^5 - \dots$$

• every physical quantity can be expressed in terms of a single, RG-invariant mass parameter Λ^{latt} , e.g. $m = c_m \cdot \Lambda^{\text{latt}}$

$$\Lambda^{\mathsf{latt}} = rac{1}{a} \, e^{-1/2 b_0 g^2} \left(b_0 g^2
ight)^{-b_1/2 b_0^2} \, \cdot \left[1 + \mathcal{O}(g^2)
ight]$$

analogously in a continuum ren. scheme one has

$$\Lambda = M \, e^{-1/2 b_0 g(M)^2} \left(b_0 g(M)^2
ight)^{-b_1/2 b_0^2} \, \cdot \left[1 + \mathcal{O}(g(M)^2)
ight]$$

• of course, the Λ parameter is nonperturbatively defined:

$$egin{aligned} \Lambda &= M \, e^{-1/2b_0 g(\mathcal{M})^2} \left(b_0 g(\mathcal{M})^2
ight)^{-b_1/2b_0^2} \ & imes \left[1 + \mathcal{O}(g(\mathcal{M})^2)
ight] \end{aligned}$$

 lattice QCD relates it nonperturbatively to the low-energy properties of QCD

• of course, the Λ parameter is nonperturbatively defined:

$$\begin{split} \Lambda &= M \, e^{-1/2b_0 g(M)^2} \left(b_0 g(M)^2 \right)^{-b_1/2b_0^2} \\ &\times \exp\left[-\int_0^{g(M)} dx \left(\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right) \right] \end{split}$$

 lattice QCD relates it nonperturbatively to the low-energy properties of QCD

• A parameter in the $\overline{\text{MS}}$ -scheme in units of r_0 :

• of course, the Λ parameter is nonperturbatively defined:

$$\begin{split} \Lambda &= M \, e^{-1/2b_0 g(M)^2} \left(b_0 g(M)^2 \right)^{-b_1/2b_0^2} \\ &\times \exp\left[-\int_0^{g(M)} dx \left(\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right) \right] \end{split}$$

 lattice QCD relates it nonperturbatively to the low-energy properties of QCD

• of course, the Λ parameter is nonperturbatively defined:

$$\begin{split} \Lambda &= M \, e^{-1/2b_0 g(M)^2} \left(b_0 g(M)^2 \right)^{-b_1/2b_0^2} \\ &\times \exp\left[-\int_0^{g(M)} dx \left(\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right) \right] \end{split}$$

- lattice QCD relates it nonperturbatively to the low-energy properties of QCD
- closely related is the running coupling α_s at scale M

$$\alpha_s(M) = \frac{g^2(M)}{4\pi}$$

measure a short distance quantity Q at scale M and match with perturbative expansion

$$\mathcal{Q}(M) = c_1 \alpha_{\overline{\mathsf{MS}}}(M) + c_2 \alpha_{\overline{\mathsf{MS}}}(M)^2 + \dots$$

The strong coupling α_s

Collaboration	Ref.	N_f	Ind	<i>L</i> ene	Der	^{OD1}	$\alpha_{\overline{_{ m MS}}}(M_{ m Z})$	Method	Table	
HPQCD 14A	[5]	2+1+1	A	0	*	0	0.11822(74)	current two points	46	
ETM 13D	648	2+1+1	Α	0	0		0.1196(4)(8)(16)	gluon-ghost vertex	47	
ETM 12C	649	2+1+1	Α	0	0		0.1200(14)	gluon-ghost vertex	47	
ETM 11D	[<mark>650</mark>]	2+1+1	Α	0	0	•	$0.1198(9)(5)(^{+0}_{-5})$	gluon-ghost vertex	47	
Bazavov 14	[61]	2+1	A	0	*	0	$0.1166(^{+12}_{-8})$	$Q-\bar{Q}$ potential	43	
Bazavov 12	[603]	2+1	Α	0	0	0	$0.1156(^{+21}_{-22})$	$Q-\bar{Q}$ potential	43	
HPQCD 10	[9]	2+1	Α	0	*	0	0.1183(7)	current two points	46	
HPQCD 10	[9]	2+1	Α	0	*	*	0.1184(6)	Wilson loops	45	
JLQCD 10	[612]	2+1	Α				$0.1118(3)(^{+16}_{-17})$	vacuum polarization	44	
PACS-CS 09A	[62]	2+1	Α	*	*	0	$0.118(3)^{\#}$	Schrödinger functional	42	
Maltman 08	[63]	2+1	Α	0	0	*	0.1192(11)	Wilson loops	45	
HPQCD 08B	[152]	2+1	Α				0.1174(12)	current two points	46	
HPQCD 08A	[616]	2+1	Α	0	*	*	0.1183(8)	Wilson loops	45	
HPQCD 05A	[615]	2+1	Α	0	0	0	0.1170(12)	Wilson loops	45	

Result with a linear continuum extrapolation in a.

- critical assessment of the situation is necessary
- dominant source of uncertainty from discretization errors and truncation of continuum/lattice PT

The strong coupling α_s

- critical assessment of the situation is necessary
- dominant source of uncertainty from discretization errors and truncation of continuum/lattice PT

The strong coupling α_s

- ► FLAG 16 estimate yields [arXiv:1607.00299] $\alpha_{\overline{\text{MS}}}^{(5)}(M_Z) = 0.1182(12)$
- ► to be compared with PDG 16 values $\alpha_{\overline{MS}}^{(5)}(M_Z) = 0.1175(17)$ (phen. only) $\alpha_{\overline{MS}}^{(5)}(M_Z) = 0.1181(13)$
- still room for systematic improvement (smaller lattice spacing,...)
- in the long term, it pays off to be conservative

Light quark masses

 $N_f = 2 + 1$: $m_{ud}^{\overline{MS}}(2 \text{ GeV}) = 3.37(8) \text{ MeV}$ (~2.4%) more precise than PDG

Light quark masses

Light quark masses

more precise than PDG

Kaon and pion decay constants and form factors

QCD effects contained in lept. decay constants $f_{\pi^{\pm}}$ and $f_{K^{\pm}}$:

$$\begin{array}{l} \langle 0 | \bar{d} \gamma_{\mu} \gamma_{5} u | \pi^{+}(p) \rangle = i p_{\mu} \cdot f_{\pi^{+}} \\ \langle 0 | \bar{s} \gamma_{\mu} \gamma_{5} u | K^{+}(p) \rangle = i p_{\mu} \cdot f_{K^{+}} \end{array}$$

and form factors $f_{0,+}(q)$ for the semi-leptonic decay $K^0 o \pi^- \ell
u$

$$egin{aligned} &\langle \pi^-(p_\pi)|ar{s}\gamma_\mu u| \mathcal{K}^0(p_\mathcal{K})
angle &= f_0(q^2)rac{m_{\mathcal{K}^0}^2-m_{\pi^-}^2}{q^2}q_\mu \ &+ f_+(q^2)\left[(p_\pi+p_\mathcal{K})_\mu-rac{m_{\mathcal{K}^0}^2-m_{\pi^-}^2}{q^2}q_\mu
ight] \end{aligned}$$

where $q = p_K - p_{\pi}$ and $f_+(0) = \lim_{q \to 0} f_+^{K^0 \pi^-}(q)$.

Kaon and pion decay constants and form factors

Precision experimental data on kaon decays yields

$$|V_{us}| f_{+}(0) = 0.2165(4), \qquad \left| \frac{V_{us}}{V_{ud}} \right| \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4)$$

• Lattice calculations of $f_+(0)$ or $f_{K^{\pm}}/f_{\pi^{\pm}}$ determine V_{ud}, V_{us}

Kaon and pion decay constants and form factors Provides a test of the SM via unitarity of the CKM matrix, e.g.

$$|V_u|^2 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1,$$
 $|V_{ub}| = 4.13(49) \cdot 10^{-3}$

Kaon and pion decay constants and form factors Provides a test of the SM via unitarity of the CKM matrix, e.g.

$$|V_u|^2 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1,$$
 $|V_{ub}| = 4.13(49) \cdot 10^{-3}$

Analysis within the SM

- The SM implies CKM matrix unitarity:
 - ► precise exp. data and unitarity condition reduce $V_{ud}, V_{us}, f_+(0), f_{K^{\pm}}/f_{\pi^{\pm}}$ to one unknown

Summary

Similar analysis available for decay constants and form factors involving the c and b quarks

```
\Rightarrow determination of |V_{cd}|, |V_{cs}| and |V_{ub}|
```

- Lattice QCD plays an essential role in fully exploiting the potential of flavour physics
 - reached the era of $\mathcal{O}(1\%)$ accuracy for many quantities
 - improvement in precision will continue
 - range of computed quantities continue to be extended
- FLAG aims to review lattice determinations of phenomenologically relevant quantities for non-experts
- ► FLAG is now entering stage 4, new review expected in 2019

Heavy quark masses

Heavy quark masses

 $N_f = 2 + 1 + 1$: $m_c/m_s = 11.70(6)$ (~0.5%) more precise than PDG

Heavy quark masses

