Status of the kaon-antikaon interaction studies

M. Silarski, L. Leśniak Jagiellonian University

- Motivation
- Proton-proton collisions at K⁺K⁻ threshold: COSY Perspectives for kaon-antikaon interaction studies at e⁺e⁻ colliders
- Conclusions & outlook

International Conference on Exotic Atoms and Related Topics - EXA2017 10-15.09.2017, Vienna, Austria

Motivation

M (MeV) -1 I3 Scalar multiplet: $\sigma(500), \kappa(700), f_0(980), a_0(980)$ M (MeV) 0^{++} $^{-1}$

I₃

Pseudoscalar mesons

COoler Synchrotron COSY

- ✤ Ring with a circumference of 184 m
- Polarised and unpolarised proton and deuteron beams
- ✤ Momentum range: 600 370 MeV/c
- Stochastic and electron cooling
- Meson production up to $\phi(1020)$
- Precise beam momentum determination (Δp/p ~ 10⁻³)

COoler Synchrotron COSY

- ✤ Ring with a circumference of 184 m
- Polarised and unpolarised proton and deuteron beams
- ✤ Momentum range: 600 370 MeV/c
- Stochastic and electron cooling
- ✤ Meson production up to \u03c6(1020)
- Precise beam momentum determination (Δp/p ~ 10⁻³)

5

Positive electiles

The $pp \rightarrow ppK^+K^-$ excitation function

Parametrization of the Final State Interaction

$$\sigma = \frac{1}{F} \int dV_{ps} |M|^{2}$$

$$|M|^{2} \approx |M_{0}|^{2} |F_{FSI}|^{2}$$

$$|M|^{2} \approx |M_{0}|^{2} |F_{FSI}|^{2}$$

$$F_{FSI} = F_{pp}(q) \times F_{p_{1}K^{-}}(k_{1}) \times F_{p_{2}K^{-}}(k_{2})$$

$$F_{pp}(q) = \frac{e^{i\delta_{pp}(^{i}S_{0})} \times \sin \delta_{pp}(^{i}S_{0})}{C \times q}$$

$$F_{pK^{-}}(k) = \frac{1}{1 - ika}$$

$$a = (0 + i1.5)[\text{fm}]$$

$$Phase space$$

$$0 \quad 50 \quad 100$$

Q (MeV)

Analysis of the K⁺K⁻-FSI at COSY-11

M. Silarski, et al., Phys. Rev. C 80, 045202 (2009)

 $a_{K^+K^-} = \left[\left(0.5^{+4}_{-0.5} \right) + i(3 \pm 3) \right]$ fm

 Analysis of the Goldhaber plots measured at Q = 10 MeV (27 events) and Q = 28 MeV (30 events) + near threshold excitation function

$$a_{pK^{-}} = (-0.65 + i0.78) [\text{fm}]$$
 $F_{K^{+}K^{-}} =$
(Y. Yan, arXiv:0905.4818 [nucl-th])

$$_{K^{-}} = \frac{1}{\frac{1}{a_{K^{+}K^{-}}} + \frac{b_{K^{+}K^{-}}k_{4}^{2}}{2} - ik_{4}}$$

Results for the effective range expansion fit

Open questions

- Differential distributions at Q=23.9 MeV cannot be desribed by pK⁻-FSI with $a_{pK}^{-} = i1.5$ fm.
- ✤ Possible influence of the pp→pK⁺Λ(1405) reaction?
- Last COSY-11 measurement at Q=4.5 MeV (preliminary) suggests that we overestimated the data very close to threshold

R_{Kpp}

 Possible improvment in the K+K- FSI undestanding in different processes

Q. J. Ye et al., Phys. Rev. C 87, 065203 (2013)

DAФNE & KLOE

 \Box e⁺e⁻ collider @ $\sqrt{s} = M_{\phi} = 1019.4$ MeV

 \Box LAB momentum $p_{\phi} \sim 15 \text{ MeV/c}$

 $\Box \ \sigma_{peak} \sim 3 \ \mu b$

❑ Separate e⁺e⁻ rings to reduce beam-beam interaction

DAONE & KLOE

 \Box e⁺e⁻ collider @ $\sqrt{s} = M_{\phi} = 1019.4$ MeV

 \Box LAB momentum $p_{\phi} \sim 15 \text{ MeV/c}$

 \Box $\sigma_{peak} \sim 3 \ \mu b$

Separate e⁺e⁻ rings to reduce beam-beam interaction

KK –FSI @ Ф-mass peak

- Advantage with respect to pp→ ppK⁺K⁻ : only two interacting particles
- The K+ K- threshold lies close to the DAFNE working point
- ✤ To fully describe the K⁺K⁻ -FSI we need to measure:

 $\begin{array}{l} e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\gamma \; [\text{EPJC49}(2007)473] \\ e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\gamma \; [\text{PLB606}(2005)12, \text{PLB670}(2009)285, \text{PLB700}(2011)102] \\ e^{+}e^{-} \rightarrow \pi^{0}\eta\gamma \; [\text{PLB681}(2009)5] \\ e^{+}e^{-} \rightarrow K_{S} \; K_{S}\gamma \; [\text{PLB679}(2009)10] \\ e^{+}e^{-} \rightarrow K^{+}K^{-}\gamma \end{array}$

- Parameters of the scalar resonances found so far in experimental analyses are very much model dependent
- Huge background due to ISR and FSR processes

Reaction mechanisms

N. N. Achasov, V. V. Gubin, V. Shevchenko , PRD 56 (1997) 203

K⁺K⁻ effective mass distributions

Perspectives for a measurement with KLOE

- ✤ Advantages:
 - Very good kaon momentum determination
 - ✤ High statistics (~10⁵ events expected in total)
- Problems:
 - ✤ Low energy photons (< 32 MeV) ⇒ lower efficiency + energy resolution
 - Low p_t tracks for low K⁺K⁻ invariant masses
- Challenging measurement

Mechanism	Total cross section (m up to 1009 MeV) [nb]	
	$24^{\circ} < \theta_{\gamma} < 156^{\circ}$	45° < θ _γ < 135°
FSR	0.330	0.238
NS	0.0020	0.0014
NS-FSR Interference	0.021	0.0015
ISR	0.183	0.104
Total	0.536	0.358

Conclusions & outlook

- □ The excitation function for the pp→ppK+K- reaction reveal an enhancement which may be assigned to the influence of the pK⁻ and K⁺K⁻ interaction
- □ The coupled channel effects and production of f0(980)/a0(980) are up to now not distinguishable even with high statistic measurement
- □ The last ANKE measurement reveals that we still do not understand fully the dynamics of the near threshold $pp \rightarrow ppK^+K^-$
- □ The feasibility study to measure the the K⁺K⁻ threshold parameters of the strong interaction amplitudes with the KLOE detector started
- ❑ We are developing a new theoretical model to describe all the coupled channels in the e⁺e⁻ collisions which may constrain more the parameters of scalar resonances

Thank You for attention

Generalization of the Dalitz Plot

□ Probability of reaction yielding a state with the *i*-th particle in momentum range dp_i (in CM):

$$d^{12}R = d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}d^{3}p_{4}\frac{1}{16E_{1}E_{2}E_{3}E_{4}}\delta^{3}\left(\sum_{j}\vec{p}_{j}\right)\delta\left(\sum_{j}E_{j}-\sqrt{s}\right)f^{2}$$

 \Box Assuming that f depends only on invariant masses of the particles one obtains (Nyborg et al. Phys. Rev. 140 922 (1965)):

$$d^{5}R = f^{2} \frac{\pi^{2}}{8s\sqrt{-B}} dM_{12}^{2} dM_{14}^{2} dM_{34}^{2} dM_{124}^{2} dM_{134}^{2}$$

$$\sigma^{m} = \int \frac{\pi^{2} |M|^{2}}{8s\sqrt{-B}} \,\mathrm{d}M_{pp}^{2} \mathrm{d}M_{K^{+}K^{-}}^{2} \mathrm{d}M_{pK^{-}}^{2} \mathrm{d}M_{ppK^{-}}^{2} \mathrm{d}M_{ppK^{+}}^{2} \qquad \beta_{j} = \frac{L_{j}\alpha\sigma_{j}^{m}}{N_{j}^{gen}}$$

Open questions

□ ppK⁻ enhancement factor from from the Faddeev calculation

$$F_{ppK^{-}} = \left| 1 + \frac{\beta + ik_1}{2} \left\{ \frac{A_0}{1 - iA_0k_1} + \frac{A_1}{1 - iA_1k_1} \right\} 1 + \frac{\beta + ik_2}{2} \left\{ \frac{A_0}{1 - iA_0k_2} + \frac{A_1}{1 - iA_1k_2} \right\} + \frac{a}{d} \cdot \frac{1 + idk_3}{1 - iak_3} \right|^2$$

 $A_0 = (-1.68 + i0.531) fm; A_1 = (0.278 + i0.683) fm; \beta = 3.5 fm^{-1}; a = 10 fm; d = 2 fm$

A. Deloff, private communication (based on N.V. Shevchenko, A. Gal and J. Mares, Phys. Rev. Lett. 98, 082301 (2007)

 $M_{pK}^{1.44} = \frac{1.4425}{M_{pK}^{+}}$

1.4325

1.435

1.4375

1.4325

1.435

1.4375

DataSimulations

 $\frac{1.44}{M_{pK}^{-}}$ $\frac{1.4425}{(GeV/c^2)}$

KLOE (K LOng Experiment)

Large cylindrical drift chamber

- Uniform tracking and vertexing in all volume
- Helium based gas mixture (90% He – 10% IsoC₄H₁₀)
 Stereo wire geometry
- □ Stereo wire geometry

```
\sigma_{\rm p}/{\rm p} = 0.4 \%
```

```
\sigma_{xy} = 150 \ \mu m; \ \sigma_z = 2 \ mm
```

```
\sigma_{\rm vtx} \sim 3 \text{ mm}
```

```
\sigma(M_{\pi\pi}) \sim 1 \text{ MeV}
```

Lead/scintillating-fiber calorimeter

- Hermetical coverage
- High efficiency for low energy photons

$$\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{\rm E(GeV)}$$

```
\sigma_t = 57 \text{ ps} / \sqrt{E(\text{GeV})} \oplus 140 \text{ ps}
\sigma_{\text{vtx}}(\gamma \gamma) \sim 1.5 \text{ cm}
```

