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ALPHA

Antihydrogen Laser PHysics Apparatus

Goal: High precision studies of antihydrogen.

I 1S - 2S spectroscopy.

I Ground state hyperfine spectroscopy (known to ∼1 parts in 1012 in
hydrogen1).

I Gravitational mass.

Approach: Trap antihydrogen in a magnetic minimum neutral atom trap
for study.

1
H. Hellwig et al. Instrumentation and Measurement, IEEE Transactions on 19, 200 (1970).
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Apparatus
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Hyperfine spectroscopy of trapped
antihydrogen
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H/H̄ Hyperfine levels

∆fHFS(B = 0) = fad − fbc

At 1 T:

fbc ≈ 28.0 GHz

fad ≈ 29.42 GHz
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Hyperfine spectroscopy of trapped antihydrogen

Challenges:

I Few trapped antihydrogen atoms (∼ 31× 104 H̄ formed →
∼8 trapped and detected).

I Strong inhomogeneous magnetic field.

I Geometry determined by antihydrogen trapping constraints.

Advantage:

I Trapped antihydrogen is in ground state.
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Hyperfine levels
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Microwave hardware

Agilent 8257D PSG synthesizer
↓

Miteq AMF-4B amplifier
↓

Vacuum feedthrough →

I Can inject up to ∼ 1 W at feedthrough.

I Mode structure in Penning trap unknown. In situ power varies
strongly with frequency and position.
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In situ field diagnostics

I Electron plasma can be loaded in centre
of neutral trap.

I Microwave radiation at cyclotron
frequency (fc = qB/(2πm)) excites
cyclotron motion of electrons, heating
plasma.

I Amplitude of heating allows us to
estimate microwave field strength
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In situ field diagnostics

I Chose magnetic field that gave pair of frequencies with low reflected
power to protect amplifier.

I At chosen frequencies BMW (fcb)/BMW (fda) ≈ 7.

I Double power at fda such that BMW (fcb)/BMW (fda) ≈ 5.

I Injected 160 mW at fcb and 320 mW at fda.

I Limited by heating of internal surfaces.
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2012 Hyperfine measurement

On Resonance: Off Resonance:
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Protocol

I Produce and trap antihydrogen (average ∼14 atoms per trial).

I Clear out residual charged particles with pulsed electric fields.
I Introduce microwaves:

I Starting below |c〉 → |b〉 transition frequency.
I Increase frequency in 16, 300 kHz steps.
I Sit at each frequency for 4 s.
I Increase frequency by 1420.4 MHz and repeat 16 more steps (driving
|d〉 → |a〉).
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Results

Relative frequency (MHz)
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Errors:

I Magnetic field drifts - 0.3 MHz

I Adding of data - 0.3 MHz

I Determination of onset - 0.3 MHz
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Simulation inputs:

I Microwave powers (from ECR heating estimate)

I Run-to-run B-field fluctuations (based on measured
magnet currents)

I B-field drift (based on measured magnet currents)

I Absolute B-field (rough fit by eye)

14 / 16



Hyperfine spectrosopy in 2017+

Improvements:

I Improved magnetic field stability and control.

I With current trapping rates we can observe 300+ spin flips in an 8hr
shift.

I External impedance matching.

Challenges:

I Magnetic field stability.

I Unknown mode structure in Penning trap.
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Looking ahead

Measure fcd + (fcb or fda)

2
W. N. Hardy, A. J. Berlinsky, L. A. Whitehead. Magnetic Resonance Studies of Gaseous Atomic Hydrogen at Low

Temperatures. PRL 42, 1042, 1979.
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Hyperfine spectroscopy CPT test
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Trapping antihydrogen: Antiprotons

Antiprotons:

I Antiprotons from CERN’s Antiproton Decelerator (AD) are captured
in the catching trap at 3 T.

I Sympathetically cooled by preloaded electrons.

I Compressed with the rotating wall technique.

I Electrons removed and pbars are sent to the atom trap.

I Another round of electron cooling, compression, and electron ejection
leaves a pbar cloud with:

N = 60× 104, r = 1 mm, T = 100 K
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Trapping antihydrogen: Positrons

Positrons:

I 22Na source feeds a Surko-type buffer-gas accumulator.

I e+ are then transfered to the atom trap.

I Thermalize in a short deep well before being transferred to a longer
shallow well before mixing.

N = 3× 106, r = 0.5 mm, T = 30 K
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Trapping antihydrogen: Mixing
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Trapping Antihydrogen
The challenge

Atom trap depth: 45 µeV (∼0.5 K)

vs

p̄ energy after injection: ∼ 5 keV
p̄ after electron cooling: ∼ 100 K
Electrode potentials: > 10 V
e+ space charge: > 1 V

Must prepare cold plasmas and mix gently

∼ 31× 104 H̄ formed → ∼8 trapped (and detected)
Trapped H̄ can be accumulated with consecutive mixing cylces
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Protocol
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