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ALPHA s 8,

Antihydrogen Laser PHysics Apparatus

Goal: High precision studies of antihydrogen.
» 1S - 2S spectroscopy.
» Ground state hyperfine spectroscopy (known to ~1 parts in 10'2 in
hydrogen?).
» Gravitational mass.

Approach: Trap antihydrogen in a magnetic minimum neutral atom trap
for study.

1H. Hellwig et al. Instrumentation and Measurement, IEEE Transactions on 19, 200 (1970).
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Apparatus e 0
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Apparatus
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Apparatus o 0.4
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Apparatus o 0.4
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Apparatus o 0.4
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Hyperfine spectroscopy of trapped
antihydrogen



H/H Hyperfine levels
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Hyperfine spectroscopy of trapped antihydrogen ""‘

Challenges:

» Few trapped antihydrogen atoms (~ 31 x 10* H formed —
~8 trapped and detected).
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Hyperfine spectroscopy of trapped antihydrogen ""‘

Challenges:

» Few trapped antihydrogen atoms (~ 31 x 10* H formed —
~8 trapped and detected).

» Strong inhomogeneous magnetic field.

» Geometry determined by antihydrogen trapping constraints.
Advantage:

» Trapped antihydrogen is in ground state.
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Hyperfine levels Jo AL
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Microwave hardware

Agilent 8257D PSG synthesizer
i)
Miteq AMF-4B amplifier
i)

Vacuum feedthrough —

» Can inject up to ~ 1 W at feedthrough.

» Mode structure in Penning trap unknown. In situ power varies
strongly with frequency and position.



In situ field diagnostics
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Plasma Electrodes

T

Octupole/

» Electron plasma can be loaded in centre

80

of neutral trap. o ‘
. .o 60 | {E{

» Microwave radiation at cyclotron 5 P
frequency (f. = gB/(2mwm)) excites ; “r i I
cyclotron motion of electrons, heating 21 MH %H

Lo ‘ !
plasm a. ! 28.210 28.220 :

» Amplitude of heating allows us to
estimate microwave field strength

Microwave Frequency (GHz)

28.230
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In situ field diagnostics o 0 ¢

Plasma\ Electrodes\
)
/

Octupole /

v

Chose magnetic field that gave pair of frequencies with low reflected
power to protect amplifier.

\4

At chosen frequencies Byw (fep)/Bmw (fda) = 7.

v

Double power at fy, such that Byw(fes)/Bmw (fda) = 5
Injected 160 mW at 7, and 320 mW at fy,.

Limited by heating of internal surfaces.

v

v
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2012 Hyperfine measurement o 0 ¢
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Protocol ""‘

» Produce and trap antihydrogen (average ~14 atoms per trial).
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» Produce and trap antihydrogen (average ~14 atoms per trial).

» Clear out residual charged particles with pulsed electric fields.

» Introduce microwaves:

» Starting below |c) — |b) transition frequency.

s (arb. units)

Py,

1420.4 MHz

\

d,

— |b)

—la

-

—

Frequency

13 /16



Protocol ""‘

» Produce and trap antihydrogen (average ~14 atoms per trial).

» Clear out residual charged particles with pulsed electric fields.
» Introduce microwaves:

» Starting below |c) — |b) transition frequency.

> Increase frequency in 16, 300 kHz steps.

» Sit at each frequency for 4 s.
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Protocol ""‘

» Produce and trap antihydrogen (average ~14 atoms per trial).

» Clear out residual charged particles with pulsed electric fields.
» Introduce microwaves:

v

Starting below |c) — |b) transition frequency.

> Increase frequency in 16, 300 kHz steps.

» Sit at each frequency for 4 s.

> Increase frequency by 1420.4 MHz and repeat 16 more steps (driving
|d) — |a)).

— |b)

d) = |a) ——

1420.4 MHz

e
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P,

Frequency
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Results
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Results
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Results

/v AL
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Simulation inputs:

>
>

Microwave powers (from ECR heating estimate)

Run-to-run B-field fluctuations (based on measured
magnet currents)

B-field drift (based on measured magnet currents)
Absolute B-field (rough fit by eye)
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Hyperfine spectrosopy in 2017+ o

Improvements:
» Improved magnetic field stability and control.
» With current trapping rates we can observe 300+ spin flips in an 8hr
shift.
» External impedance matching.
Challenges:
» Magnetic field stability.

» Unknown mode structure in Penning trap.
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Looking ahead s 0.4
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2W. N. Hardy, A. J. Berlinsky, L. A. Whitehead. Magnetic Resonance Studies of Gaseous Atomic Hydrogen at Low

Temperatures. PRL 42, 1042, 1979.
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Hyperfine spectroscopy CPT test ""‘

Mass (GeV/c?)
102 102 1071° 10710 10° 10°
T

10710 10° 10° 10° 101 10'®
Energy (GHz)



Trapping antihydrogen: Antiprotons ""‘

Antiprotons:

» Antiprotons from CERN's Antiproton Decelerator (AD) are captured
in the catching trap at 3 T.
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Trapping antihydrogen: Antiprotons ""‘

Antiprotons:

» Antiprotons from CERN's Antiproton Decelerator (AD) are captured
in the catching trap at 3 T.

» Sympathetically cooled by preloaded electrons.
» Compressed with the rotating wall technique.
» Electrons removed and pbars are sent to the atom trap.

» Another round of electron cooling, compression, and electron ejection
leaves a pbar cloud with:

N =60 x 10* r=1mm, T =100 K



Trapping antihydrogen: Positrons ""‘

Positrons:

» 22Na source feeds a Surko-type buffer-gas accumulator.
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Trapping antihydrogen: Positrons ""‘

Positrons:
» 22Na source feeds a Surko-type buffer-gas accumulator.
» eT are then transfered to the atom trap.

» Thermalize in a short deep well before being transferred to a longer
shallow well before mixing.

N=3x10° r=05mm, T =30K



Trapping antihydrogen: Mixing
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Trapping antihydrogen: Mixing "’A
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Trapping antihydrogen: Mixing "’A
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~ 31 x 10* H formed — ~8 trapped (and detected)
Trapped H can be accumulated with consecutive mixing cylces



Trapping Antihydrogen
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The challenge

Atom trap depth: 45 pueV (~0.5 K)

VS

p energy after injection: ~ 5 keV
p after electron cooling: ~ 100 K
Electrode potentials: > 10V
e’ space charge: >1V
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Trapping Antihydrogen "’A

The challenge

Atom trap depth: 45 pueV (~0.5 K)

VS

p energy after injection: ~ 5 keV
p after electron cooling: ~ 100 K
Electrode potentials: > 10V
e’ space charge: >1V

Must prepare cold plasmas and mix gently
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Trapping Antihydrogen "’A

The challenge

Atom trap depth: 45 pueV (~0.5 K)

VS

p energy after injection: ~ 5 keV
p after electron cooling: ~ 100 K
Electrode potentials: > 10V
e’ space charge: >1V

Must prepare cold plasmas and mix gently

~ 31 x 10* H formed — ~8 trapped (and detected)
Trapped H can be accumulated with consecutive mixing cylces
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