Hyperfine spectroscopy of antihydrogen in the ALPHA experiment

Tim Friesen on behalf of the ALPHA collaboration Aarhus University EXA2017 September 12, 2017

Stockholm University

Antihydrogen Laser PHysics Apparatus

Goal: High precision studies of antihydrogen.

- ► 1S 2S spectroscopy.
- ▶ Ground state hyperfine spectroscopy (known to \sim 1 parts in 10^{12} in hydrogen¹).
- Gravitational mass.

Approach: Trap antihydrogen in a magnetic minimum neutral atom trap for study.

 $^{^{1}}$ H. Hellwig et al. Instrumentation and Measurement, IEEE Transactions on 19, 200 (1970).

Apparatus

H/\bar{H} Hyperfine levels

At 1 T:

 $f_{bc} \approx 28.0 \mathrm{~GHz}$ $f_{ad} \approx 29.42 \mathrm{~GHz}$

Challenges:

▶ Few trapped antihydrogen atoms ($\sim 31 \times 10^4~{
m \ddot{H}}$ formed \rightarrow $\sim \! 8$ trapped and detected).

Challenges:

- ▶ Few trapped antihydrogen atoms ($\sim 31 \times 10^4~{
 m H}$ formed \rightarrow ~ 8 trapped and detected).
- ► Strong inhomogeneous magnetic field.

Challenges:

- ▶ Few trapped antihydrogen atoms ($\sim 31 \times 10^4~{
 m H}$ formed \rightarrow ~ 8 trapped and detected).
- ▶ Strong inhomogeneous magnetic field.
- ▶ Geometry determined by antihydrogen trapping constraints.

Challenges:

- ▶ Few trapped antihydrogen atoms ($\sim 31 \times 10^4~{
 m \bar{H}}$ formed \rightarrow ~ 8 trapped and detected).
- Strong inhomogeneous magnetic field.
- ▶ Geometry determined by antihydrogen trapping constraints.

Advantage:

► Trapped antihydrogen is in ground state.

Hyperfine levels

Microwave hardware

Agilent 8257D PSG synthesizer \downarrow Miteq AMF-4B amplifier \downarrow Vacuum feedthrough \rightarrow

- ightharpoonup Can inject up to ~ 1 W at feedthrough.
- ▶ Mode structure in Penning trap unknown. *In situ* power varies strongly with frequency and position.

In situ field diagnostics

- Electron plasma can be loaded in centre of neutral trap.
- Microwave radiation at cyclotron frequency $(f_c = qB/(2\pi m))$ excites cyclotron motion of electrons, heating plasma.
- Amplitude of heating allows us to estimate microwave field strength

In situ field diagnostics

- ► Chose magnetic field that gave pair of frequencies with low reflected power to protect amplifier.
- ▶ At chosen frequencies $B_{MW}(f_{cb})/B_{MW}(f_{da}) \approx 7$.
- ▶ Double power at f_{da} such that $B_{MW}(f_{cb})/B_{MW}(f_{da}) \approx 5$.
- ▶ Injected 160 mW at f_{cb} and 320 mW at f_{da} .
- ▶ Limited by heating of internal surfaces.

2012 Hyperfine measurement

▶ Produce and trap antihydrogen (average \sim 14 atoms per trial).

- ightharpoonup Produce and trap antihydrogen (average \sim 14 atoms per trial).
- ▶ Clear out residual charged particles with pulsed electric fields.

- ightharpoonup Produce and trap antihydrogen (average \sim 14 atoms per trial).
- ► Clear out residual charged particles with pulsed electric fields.
- ► Introduce microwaves:
 - Starting below $|c\rangle \rightarrow |b\rangle$ transition frequency.

- ightharpoonup Produce and trap antihydrogen (average \sim 14 atoms per trial).
- Clear out residual charged particles with pulsed electric fields.
- ► Introduce microwaves:
 - Starting below |c
 angle
 ightarrow |b
 angle transition frequency.
 - ► Increase frequency in 16, 300 kHz steps.
 - ▶ Sit at each frequency for 4 s.

- lacktriangle Produce and trap antihydrogen (average $\sim\!14$ atoms per trial).
- ▶ Clear out residual charged particles with pulsed electric fields.
- ► Introduce microwaves:
 - Starting below |c
 angle
 ightarrow |b
 angle transition frequency.
 - ▶ Increase frequency in 16, 300 kHz steps.
 - ▶ Sit at each frequency for 4 s.
 - Increase frequency by 1420.4 MHz and repeat 16 more steps (driving |d
 angle
 ightarrow |a
 angle).

Results

NRuns: 22 Total counts: 194

Counts in $|c\rangle \rightarrow |b\rangle$ window: 112 Counts in $|d\rangle \rightarrow |a\rangle$ window: 82

Not spin flipped: 9

Expected background per bin: 0.5

NRuns: 22 Total counts: 194

Counts in $|c\rangle \rightarrow |b\rangle$ window: 112 Counts in $|d\rangle \rightarrow |a\rangle$ window: 82

Not spin flipped: 9

Expected background per bin: 0.5

Errors:

Magnetic field drifts - 0.3 MHz

Adding of data - 0.3 MHz

Determination of onset - 0.3 MHz

Results

NRuns: 22

Total counts: 194

Counts in $|c\rangle \rightarrow |b\rangle$ window: 112 Counts in $|d\rangle \rightarrow |a\rangle$ window: 82

Not spin flipped: 9

Expected background per bin: 0.5

Simulation inputs:

- ► Microwave powers (from ECR heating estimate)
- Run-to-run B-field fluctuations (based on measured magnet currents)
- ► B-field drift (based on measured magnet currents)
- Absolute B-field (rough fit by eye)

Hyperfine spectrosopy in 2017+

Improvements:

- ▶ Improved magnetic field stability and control.
- ▶ With current trapping rates we can observe 300+ spin flips in an 8hr shift.
- ► External impedance matching.

Challenges:

- Magnetic field stability.
- Unknown mode structure in Penning trap.

Looking ahead

Measure $f_{cd} + (f_{cb} \text{ or } f_{da})$

²W. N. Hardy, A. J. Berlinsky, L. A. Whitehead. Magnetic Resonance Studies of Gaseous Atomic Hydrogen at Low Temperatures. PRL 42, 1042, 1979.

Appendix

Hyperfine spectroscopy CPT test

Antiprotons:

▶ Antiprotons from CERN's Antiproton Decelerator (AD) are captured in the catching trap at 3 T.

- ► Antiprotons from CERN's Antiproton Decelerator (AD) are captured in the catching trap at 3 T.
- Sympathetically cooled by preloaded electrons.

- ► Antiprotons from CERN's Antiproton Decelerator (AD) are captured in the catching trap at 3 T.
- ► Sympathetically cooled by preloaded electrons.
- Compressed with the rotating wall technique.

- ▶ Antiprotons from CERN's Antiproton Decelerator (AD) are captured in the catching trap at 3 T.
- ► Sympathetically cooled by preloaded electrons.
- Compressed with the rotating wall technique.
- ▶ Electrons removed and pbars are sent to the atom trap.

- ► Antiprotons from CERN's Antiproton Decelerator (AD) are captured in the catching trap at 3 T.
- Sympathetically cooled by preloaded electrons.
- ▶ Compressed with the rotating wall technique.
- Electrons removed and pbars are sent to the atom trap.
- ► Another round of electron cooling, compression, and electron ejection leaves a pbar cloud with:

$$N = 60 \times 10^4$$
, $r = 1$ mm, $T = 100$ K

Trapping antihydrogen: Positrons

Positrons:

▶ ²²Na source feeds a Surko-type buffer-gas accumulator.

Trapping antihydrogen: Positrons

Positrons:

- ▶ ²²Na source feeds a Surko-type buffer-gas accumulator.
- $ightharpoonup e^+$ are then transferred to the atom trap.

Trapping antihydrogen: Positrons

Positrons:

- ▶ ²²Na source feeds a Surko-type buffer-gas accumulator.
- $ightharpoonup e^+$ are then transferred to the atom trap.
- ► Thermalize in a short deep well before being transferred to a longer shallow well before mixing.

$$N = 3 \times 10^6$$
, $r = 0.5$ mm, $T = 30$ K

$$N = 60 \times 10^4$$
, $T = 100 \text{ K}$
 $N = 3 \times 10^6 \text{ } T = 30 \text{ K}$

5/7

5/7

5/7

 $\sim 31\times 10^4~\bar{\rm H}$ formed $\to \sim\! 8$ trapped (and detected) Trapped $\bar{\rm H}$ can be accumulated with consecutive mixing cylces

Trapping Antihydrogen

The challenge

Atom trap depth: **45** μ eV (\sim **0.5** K)

VS

 $ar{p}$ energy after injection: \sim **5 keV** $ar{p}$ after electron cooling: \sim **100 K** Electrode potentials: > **10 V** e^+ space charge: > **1 V**

Trapping Antihydrogen

The challenge

Atom trap depth: **45** μ eV (\sim **0.5** K)

VS

 $ar{p}$ energy after injection: \sim **5 keV** $ar{p}$ after electron cooling: \sim **100 K** Electrode potentials: > **10 V** e^+ space charge: > **1 V**

Must prepare cold plasmas and mix gently

Trapping Antihydrogen

The challenge

Atom trap depth: **45** μ **eV** (\sim **0.5** K)

VS

 $ar{p}$ energy after injection: $\sim 5 \text{ keV}$ $ar{p}$ after electron cooling: $\sim 100 \text{ K}$ Electrode potentials: > 10 V e^+ space charge: > 1 V

Must prepare cold plasmas and mix gently

 $\sim 31\times 10^4~\bar{\rm H}$ formed $\to \sim\!8$ trapped (and detected) Trapped $\bar{\rm H}$ can be accumulated with consecutive mixing cylces

$$\Delta f_{HFS} = f_{19} - f_3$$