Predicting and Discovering True Muonium

Henry Lamm w. Yao Ji and Naveen Raman

EXA2017 - Vienna, Austria

September 12, 2017

Universität Regensburg

Henry Lamm

True Muonium

September 12, 2017

. / 19

1 The Muon Problem & $(\mu^+\mu^-)$

- 2 Predicting
- 3 Discovering
- 4 Conclusions

=

Who ordered that?

Henry Lamm

True Muonium

September 12, 2017

=

э

6 / 19

Who ordered that?

In Standard Model, *lepton universality* is only broken by Higgs

Who ordered that?

In Standard Model, *lepton universality* is only broken by Higgs

 ν_ℓ require modification beyond Standard Model, so at some level lepton universality is violated

			20
Henry Lamm	True Muonium	September 12, 2017 3 /	19

What's the deal with muon physics?¹²³

¹G. Bennett et al. "Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL". In: *Phys. Rev.* D73 (2006), p. 072003. arXiv: hep-ex/0602035 [hep-ex].

²A. Antognini et al. "Proton Structure from the Measurement of 2S - 2P Transition Frequencies of Muonic Hydrogen". In: Science 339 (2013), pp. 417-420.

³R. Pohl et al. "Laser spectroscopy of muonic deuterium". In: Science 353.6300 (2016), pp. 669-673.

Building a new streetlight: True Muonium

I don't know about U? Well, I'm feeling $\mu+\mu$ - Taylor Swift on Muon Problem

Henry Lamm

True Muonium

September 12, 2017

5 / 19

Wait? I can bind muons?

• $(\mu^+\mu^-)$ proposed in 1961, still undetected

⁴S. J. Brodsky and R. F. Lebed. "Production of the Smallest QED Atom: True Muonium $(\mu^+\mu^-)$ ". In: *Phys. Rev. Lett.* 102 (2009), p. 213401. arXiv: 0904.2225 [hep-ph].

Wait? I can bind muons?

(μ⁺μ⁻) proposed in 1961, still undetected
Leptonic QED bound state analogous to Ps or Quarkonium

⁴S. J. Brodsky and R. F. Lebed. "Production of the Smallest QED Atom: True Muonium $(\mu^+\mu^-)$ ". In: *Phys. Rev. Lett.* 102 (2009), p. 213401. arXiv: 0904.2225 [hep-ph].

Wait? I can bind muons?

The true muonium $(\mu^+\mu^-)$ and true tauonium $(\tau^+\tau^-)$ [and the much more difficult to produce "mu-tauonium" $(\mu^{\pm}\tau^{\mp})$] bound states are not only the heaviest, but also the most compact pure QED systems [the $(\mu^+\mu^-)$ Bohr radius is 512 fm]. The relatively rapid weak decay of the τ unfortunately makes the observation and study of true tauonium more difficult, as quantified below. In the case of true muonium the proposed production mechanisms Z indicates a heavy nucleus), direct $\mu^+\mu^-$ collisions [7], $\eta \rightarrow (\mu^+ \mu^-) \gamma$ [14], and $e^+ e^- \rightarrow (\mu^+ \mu^-)$ [15]. In addition, the properties of true muonium have been studied in a number of papers [9,16,17].

- $(\mu^+\mu^-)$ proposed in 1961, still undetected
- Leptonic QED bound state analogous to Ps or Quarkonium
 ...but many channels suggested⁴

⁴S. J. Brodsky and R. F. Lebed. "Production of the Smallest QED Atom: True Muonium $(\mu^+\mu^-)$ ". In: *Phys. Rev. Lett.* 102 (2009), p. 213401. arXiv: 0904.2225 [hep-ph].

Name	Year	Refs.	Au.

⁵V. Baier and V. Synakh. "The formation of bimuonium in electron-positron collisions". In: *Zhur. Eksptl'. i Teoret. Fiz.* 41 (1961).

⁶P Budini. Reactions with bound states. Tech. rep. CM-P00056754, 1961.

⁷V. Hughes and B. Maglic. In: Bull. Am. Phys. Soc. 16 (1971), p. 65.

Name	Year	Refs.	Au.
$Dimuonium^6$			
$True \ Muonium^7$			

⁵V. Baier and V. Synakh. "The formation of bimuonium in electron-positron collisions". In: *Zhur. Eksptl'. i Teoret. Fiz.* 41 (1961).

⁶P Budini. Reactions with bound states. Tech. rep. CM-P00056754, 1961.

⁷V. Hughes and B. Maglic. In: Bull. Am. Phys. Soc. 16 (1971), p. 65.

Name	Year	Refs.	Au.
$Dimuonium^6$	1961		
$True \ Muonium^7$	1971		

⁵V. Baier and V. Synakh. "The formation of bimuonium in electron-positron collisions". In: *Zhur. Eksptl'. i Teoret. Fiz.* 41 (1961).

⁶P Budini. Reactions with bound states. Tech. rep. CM-P00056754, 1961.

⁷V. Hughes and B. Maglic. In: Bull. Am. Phys. Soc. 16 (1971), p. 65.

Name	Year	Refs.	Au.
$Dimuonium^6$	1961	23	
$True \ Muonium^7$	1971	25^{\dagger}	

⁵V. Baier and V. Synakh. "The formation of bimuonium in electron-positron collisions". In: *Zhur. Eksptl'. i Teoret. Fiz.* 41 (1961).

⁶P Budini. Reactions with bound states. Tech. rep. CM-P00056754, 1961.

⁷V. Hughes and B. Maglic. In: Bull. Am. Phys. Soc. 16 (1971), p. 65.

Name	Year	Refs.	Au.
$Dimuonium^6$	1961	23	
$True \ Muonium^7$	1971	25^{\dagger}	

 $^{\dagger}10$ of these are mine.

⁵V. Baier and V. Synakh. "The formation of bimuonium in electron-positron collisions". In: *Zhur. Eksptl'. i Teoret. Fiz.* 41 (1961).

⁶P Budini. Reactions with bound states. Tech. rep. CM-P00056754, 1961.

⁷V. Hughes and B. Maglic. In: Bull. Am. Phys. Soc. 16 (1971), p. 65.

Name	Year	Refs.	Au.
$Dimuonium^6$	1961	23	34
$True \ Muonium^7$	1971	25^{\dagger}	28

 $^{\dagger}10$ of these are mine.

⁵V. Baier and V. Synakh. "The formation of bimuonium in electron-positron collisions". In: *Zhur. Eksptl'. i Teoret. Fiz.* 41 (1961).

⁶P Budini. Reactions with bound states. Tech. rep. CM-P00056754, 1961.

⁷V. Hughes and B. Maglic. In: Bull. Am. Phys. Soc. 16 (1971), p. 65.

Name	Year	Refs.	Au.
$Dimuonium^6$	1961	23	34
True Muonium ⁷	1971	25^{\dagger}	28

 $^{\dagger}10$ of these are mine.

...but clearly wrong are Muononium and Muonic Muonium

⁵V. Baier and V. Synakh. "The formation of bimuonium in electron-positron collisions". In: *Zhur. Eksptl'. i Teoret. Fiz.* 41 (1961).

⁶P Budini. Reactions with bound states. Tech. rep. CM-P00056754, 1961.

⁷V. Hughes and B. Maglic. In: Bull. Am. Phys. Soc. 16 (1971), p. 65.

Henry Lamm

True Muonium

September 12, 2017

...because if you did⁸⁹¹⁰¹¹¹²¹³¹⁴¹⁵¹⁶¹⁷¹⁸¹⁹

⁸A. Badertscher et al. "An Improved Limit on Invisible Decays of Positronium". In: *Phys. Rev.* D75 (2007), p. 032004. arXiv: hep-ex/0609059 [hep-ex].

⁹J. Jaeckel and S. Roy. "Spectroscopy as a test of Coulomb's law: A Probe of the hidden sector". In: *Phys. Rev.* D82 (2010), p. 125020. arXiv: 1008.3536 [hep-ph].

¹⁰B. Batell, D. McKeen, and M. Pospelov. "New Parity-Violating Muonic Forces and the Proton Charge Radius". In: *Phys. Rev. Lett.* 107 (2011), p. 011803. arXiv: 1103.0721 [hep-ph].

¹¹B. Batell, M. Pospelov, and A. Ritz. "Multi-lepton Signatures of a Hidden Sector in Rare B Decays". In: Phys. Rev. D83 (2011), p. 054005. arXiv: 0911.4938 [hep-ph].

¹²D. Tucker-Smith and I. Yavin. "Muonic hydrogen and MeV forces". In: Phys. Rev. D83 (2011), p. 101702. arXiv: 1011.4922 [hep-ph].

¹³J. Kopp, L. Michaels, and J. Smirnov. "Loopy Constraints on Leptophilic Dark Matter and Internal Bremsstrahlung". In: JCAP 1404 (2014), p. 022. arXiv: 1401.6457 [hep-ph].

¹⁴A. H. Gomes, A. Kostelecký, and A. J. Vargas. "Laboratory tests of Lorentz and CPT symmetry with muons". In: *Phys. Rev.* D90.7 (2014), p. 076009. arXiv: 1407.7748 [hep-ph].

¹⁵S. G. Karshenboim. "HFS interval of the 2s state of hydrogen-like atoms and a constraint on a pseudovector boson with mass below $1 \text{ keV}/c^2$ ". In: *Phys. Rev.* A83 (2011), p. 062119. arXiv: 1005.4875 [hep-ph].

¹⁶S. Karshenboim. "Precision physics of simple atoms and constraints on a light boson with ultraweak coupling". In: *Phys. Rev. Lett.* 104 (2010), p. 220406. arXiv: 1005.4859 [hep-ph].

¹⁷S. Karshenboim and V. Flambaum. "Constraint on axion-like particles from atomic physics". In: Phys. Rev. A84 (2011), p. 064502. arXiv: 1110.6259 [physics.atom-ph].

¹⁸S. G. Karshenboim, D. McKeen, and M. Pospelov. "Constraints on muon-specific dark forces". In: *Phys. Rev.* D90.7 (2014), p. 073004. arXiv: 1401.6154 [hep-ph].

¹⁹H. Lamm. "Applying Bayesian Inference to Galileon Solutions of the Muon Problem". In: Phys. Rev. D94.11 (2016), p. 115007. arXiv: 1609.07520 [hep-ph].

(1) (A) (A) (A) (A) (A)

/ 19

-

イロト イタト イヨト イヨト

²⁰D. Tucker-Smith and I. Yavin. "Muonic hydrogen and MeV forces". In: Phys. Rev. D83 (2011), p. 101702. arXiv: 1011.4922 [hep-ph].

²⁰D. Tucker-Smith and I. Yavin. "Muonic hydrogen and MeV forces". In: Phys. Rev. D83 (2011), p. 101702. arXiv: 1011.4922 [hep-ph].

²⁰D. Tucker-Smith and I. Yavin. "Muonic hydrogen and MeV forces". In: Phys. Rev. D83 (2011), p. 101702. arXiv: 1011.4922 [hep-ph].

²⁰D. Tucker-Smith and I. Yavin. "Muonic hydrogen and MeV forces". In: Phys. Rev. D83 (2011), p. 101702. arXiv: 1011.4922 [hep-ph].

Henry Lamm

9 / 19

1 The Muon Problem & $(\mu^+\mu^-)$

- 2 Predicting
- 3 Discovering
- 4 Conclusions

イロト イポト イヨト イヨト

э

Obs.	E[MHz] 2000	E[MHz] 2017
Lamb	$1.37(5) \times 10^7$	$1.3813(14) \times 10^{7}$
1s - 2s	$2.55(5) \times 10^{11}$	
hfs	$42329604(800)_{\rm had}(1200)_{\rm miss}$	$42329435(16)_{\rm had}(90)_{\rm ind}(700)_{\mu}$

• Unlike Positronium e, had, τ loops contribute appreciably $\frac{\alpha m_{\mu}}{m_{e}} \approx 1.5.$

²¹HL and NR, in prep.

 $^{^{22}}$ U. Jentschura et al. "The Bound $\mu^+\mu^-$ system". In: Phys. Rev. A56 (1997), p. 4483. arXiv: physics/9706026 [physics].

²³Y. Ji and H. Lamm. "Some radiative corrections to the hyperfine splitting of true muonium: two-photon-exchange contributions". In: (2017). arXiv: 1701.04362 [physics.atom-ph].

Obs.	E[MHz] 2000	E[MHz] 2017
Lamb	$1.37(5) \times 10^7$	$1.3813(14) \times 10^{7}$
1s - 2s	$2.55(5) \times 10^{11}$	
hfs	$42329604(800)_{\rm had}(1200)_{\rm miss}$	$42329435(16)_{\rm had}(90)_{\rm ind}(700)_{\mu}$

• Unlike Positronium e, had, τ loops contribute appreciably $\frac{\alpha m_{\mu}}{m_{e}} \approx 1.5.$

• Lamb shift²¹ and $1s - 2s^{22}$ have a long way to go

²¹HL and NR, in prep.

²³Y. Ji and H. Lamm. "Some radiative corrections to the hyperfine splitting of true muonium: two-photon-exchange contributions". In: (2017). arXiv: 1701.04362 [physics.atom-ph].

Henry Lamm

 $^{^{22}}$ U. Jentschura et al. "The Bound $\mu^+\mu^-$ system". In: Phys. Rev. A56 (1997), p. 4483. arXiv: physics/9706026 [physics].

Obs.	E[MHz] 2000	E[MHz] 2017
Lamb	$1.37(5) \times 10^7$	$1.3813(14) \times 10^{7}$
1s - 2s	$2.55(5) \times 10^{11}$	
hfs	$42329604(800)_{\rm had}(1200)_{\rm miss}$	$42329435(16)_{\rm had}(90)_{\rm ind}(700)_{\mu}$

- Unlike Positronium e, had, τ loops contribute appreciably $\frac{\alpha m_{\mu}}{m_{e}} \approx 1.5.$
- Lamb shift²¹ and $1s 2s^{22}$ have a long way to go

• hfs predictions are closest to goal²³

²¹HL and NR, in prep.

²³Y. Ji and H. Lamm. "Some radiative corrections to the hyperfine splitting of true muonium: two-photon-exchange contributions". In: (2017). arXiv: 1701.04362 [physics.atom-ph].

 $^{^{22}}$ U. Jentschura et al. "The Bound $\mu^+\mu^-$ system". In: Phys. Rev. A56 (1997), p. 4483. arXiv: physics/9706026 [physics].

Obs.	E[MHz] 2000	E[MHz] 2017
Lamb	$1.37(5) \times 10^7$	$1.3813(14) \times 10^{7}$
1s - 2s	$2.55(5) \times 10^{11}$	
hfs	$42329604(800)_{\rm had}(1200)_{\rm miss}$	$42329435(16)_{\rm had}(90)_{\rm ind}(700)_{\mu}$

- Unlike Positronium e, had, τ loops contribute appreciably $\frac{\alpha m_{\mu}}{m_{e}} \approx 1.5.$
- Lamb shift²¹ and $1s 2s^{22}$ have a long way to go
- hfs predictions are closest to goal²³
- Technology exist for these computations diagram by diagram

²³Y. Ji and H. Lamm. "Some radiative corrections to the hyperfine splitting of true muonium: two-photon-exchange contributions". In: (2017). arXiv: 1701.04362 [physics.atom-ph].

 $^{^{21}\}mathrm{HL}$ and NR, in prep.

 $^{^{22}}$ U. Jentschura et al. "The Bound $\mu^+\mu^-$ system". In: Phys. Rev. A56 (1997), p. 4483. arXiv: physics/9706026 [physics].

HODBER	
пени	

イロト イポト イヨト イヨト

э

The current state of hfs in true muonium

$\mathcal{O}(m\alpha^n)$	C_n	$\delta E_{\rm hfs}^{1s} [{ m MHz}]$
$m\alpha^4$	$\frac{7}{12}$	42260692
$\frac{m\alpha^5}{\pi}$	$-\frac{1}{2}\ln(2)-\frac{8}{9}$	-207904 QCD
$\left(\frac{m\alpha^{0}}{\pi} \mu\right)$	0.81650(9) 1611.04258	137400(16)
$\frac{m\alpha^0}{\pi^2}$	$-\frac{52}{32}\zeta(3) + \left(\frac{221}{24}\ln(2) - \frac{5197}{576}\right)\zeta(2) + \frac{1}{2}\ln(2) + \frac{1367}{648}$	-1515 QED
$\left(\frac{m\alpha^6}{\pi^2}\right)_{\mu}$	350.572533^* $1607.07059,1701.043$	6 2 137034*(700)
$m\alpha^6 \ln\left(\frac{1}{\alpha}\right)$	$\frac{5}{24}$	3954
$\frac{m\alpha'}{\pi^3}$	160*	$145^{*}(90)$
$\frac{m\alpha^7}{\pi}$ ln $\left(\frac{1}{\alpha}\right)$	$-\frac{17}{3}\ln(2)+\frac{217}{90}$	-67
$\frac{m\alpha^7}{\pi}\ln^2\left(\frac{1}{\alpha}\right)$	$-\frac{7}{8}$	-190 EW
$\frac{m^3 G_F \alpha^3}{\sqrt{2}\pi}$	$-\frac{3}{8}$ 1502.03841	-109
$\frac{m\alpha^7}{\pi^3} _{\mu}$	-5.324248^* 1507.07841	$-5^{*}(40)$
Total		42329435(16)(90)(700)

 $|\mu$ indicates true muonium corrections missing from positronium, which depend upon m_{μ}/m_e . Errors consists of (1) hadronic model dependence, (2) missing mass-independent QED contributions at $\mathcal{O}(m\alpha^7)$, (3) missing mass-dependent QED contributions at $\mathcal{O}(m\alpha^6)$. * indicate partial terms.

- **1** The Muon Problem & $(\mu^+\mu^-$
- 2 Predicting
- **3** Discovering
- 4 Conclusions

E > 4 E >

э

Henry Lamm

True Muonium

September 12, 2017

15 / 19

• Analogous to pion production, but $\propto \left(\frac{\alpha_{em}}{\alpha_S}\right)^3$

Henry Lamm

Analogous to pion production, but ∝ (^{α_{em}}/_{α_S})³
Lifetime is τ_(μ+μ−) = n³ ps << τ_{π⁰} = 26 ns

Henry Lamm

• Analogous to pion production, but $\propto \left(\frac{\alpha_{em}}{\alpha_S}\right)^3$

• Lifetime is
$$\tau_{(\mu^+\mu^-)} = n^3 \mathbf{ps} << \tau_{\pi^0} = 26 \text{ ns}$$

• ...but true muonium is likely to be **relativistic**

- Analogous to pion production, but $\propto \left(\frac{\alpha_{em}}{\alpha_S}\right)^3$
- Lifetime is $\tau_{(\mu^+\mu^-)} = n^3$ ps $<< \tau_{\pi^0} = 26$ ns
- ...but true muonium is likely to be **relativistic**
- Truly an **intensity** frontier proposition

• Exist: DIRAC, HPS are fixed targets

- Exist: DIRAC, HPS are fixed targets
- Proposed: LEMAM is $\mu^+\mu^-$ collider

- Exist: DIRAC, HPS are fixed targets
- Proposed: LEMAM is $\mu^+\mu^-$ collider
- Proposed: e^+e^- collider at BINP

- Exist: DIRAC, HPS are fixed targets
- Proposed: LEMAM is $\mu^+\mu^-$ collider
- Proposed: e^+e^- collider at BINP
- Proposed: **REDTOP** is a η/η' factory

Proposals for rare decay searches, like REDTOP, would be capable of detecting true muonium+ γ . Large $\mathcal{O}(\alpha)$ corrections and $F_{\gamma^*}(q^2)$ dependence needed

$$\frac{\mathcal{B}(\eta \to \gamma(\mu^+\mu^-))}{\mathcal{B}(\eta \to \gamma\gamma)} = 1.476(5)_{\text{stat}}(4)_{\text{sys}} \times 10^{-9}$$
$$\frac{\mathcal{B}(\eta' \to \gamma(\mu^+\mu^-))}{\mathcal{B}(\eta' \to \gamma\gamma)} = 1.761(7)_{\text{stat}}(2)_{\text{sys}} \times 10^{-9}$$
$$\frac{\mathcal{B}(K_L \to \gamma(\mu^+\mu^-))}{\mathcal{B}(K_L \to \gamma\gamma)} \approx 1.26(2)_{\text{model}} \times 10^{-9}$$

²⁴YJ and HL, in prep.

Henry Lamm

 $^{^{25}}$ Y. Ji and H. Lamm. "Discovering True Muonium in $K_L \to (\mu^+\mu^-)\gamma$ ". In: (2017). arXiv: 1706.04986 [hep-ph].

Proposals for rare decay searches, like REDTOP, would be capable of detecting true muonium+ γ . Large $\mathcal{O}(\alpha)$ corrections and $F_{\gamma^*}(q^2)$ dependence needed

$$\frac{\mathcal{B}(\eta \to \gamma(\mu^+\mu^-))}{\mathcal{B}(\eta \to \gamma\gamma)} = 1.476(5)_{\text{stat}}(4)_{\text{sys}} \times 10^{-9}$$
$$\frac{\mathcal{B}(\eta' \to \gamma(\mu^+\mu^-))}{\mathcal{B}(\eta' \to \gamma\gamma)} = 1.761(7)_{\text{stat}}(2)_{\text{sys}} \times 10^{-9}$$
$$\frac{\mathcal{B}(K_L \to \gamma(\mu^+\mu^-))}{\mathcal{B}(K_L \to \gamma\gamma)} \approx 1.26(2)_{\text{model}} \times 10^{-9}$$

REDTOP: $2 \times 10^{12} \eta \rightarrow 80$ events!²⁴ ($\epsilon = 10\%$)

Henry Lamm

²⁴YJ and HL, in prep.

 $^{^{25}}$ Y. Ji and H. Lamm. "Discovering True Muonium in $K_L \to (\mu^+\mu^-)\gamma$ ". In: (2017). arXiv: 1706.04986 [hep-ph].

Proposals for rare decay searches, like REDTOP, would be capable of detecting true muonium+ γ . Large $\mathcal{O}(\alpha)$ corrections and $F_{\gamma^*}(q^2)$ dependence needed

$$\frac{\mathcal{B}(\eta \to \gamma(\mu^+\mu^-))}{\mathcal{B}(\eta \to \gamma\gamma)} = 1.476(5)_{\text{stat}}(4)_{\text{sys}} \times 10^{-9}$$
$$\frac{\mathcal{B}(\eta' \to \gamma(\mu^+\mu^-))}{\mathcal{B}(\eta' \to \gamma\gamma)} = 1.761(7)_{\text{stat}}(2)_{\text{sys}} \times 10^{-9}$$
$$\frac{\mathcal{B}(K_L \to \gamma(\mu^+\mu^-))}{\mathcal{B}(K_L \to \gamma\gamma)} \approx 1.26(2)_{\text{model}} \times 10^{-9}$$

REDTOP: $2 \times 10^{12} \eta \rightarrow 80$ events!²⁴ ($\epsilon = 10\%$) Near-future experiments could also probe $\eta', K_L^{25}, K_S, \cdots$

Henry Lamm

²⁴YJ and HL, in prep.

 $^{^{25}}$ Y. Ji and H. Lamm. "Discovering True Muonium in $K_L \to (\mu^+\mu^-)\gamma$ ". In: (2017). arXiv: 1706.04986 [hep-ph].

Proposals for rare decay searches, like REDTOP, would be capable of detecting true muonium+ γ . Large $\mathcal{O}(\alpha)$ corrections and $F_{\gamma^*}(q^2)$ dependence needed

$$\frac{\mathcal{B}(\eta \to \gamma(\mu^+\mu^-))}{\mathcal{B}(\eta \to \gamma\gamma)} = 1.476(5)_{\text{stat}}(4)_{\text{sys}} \times 10^{-9}$$
$$\frac{\mathcal{B}(\eta' \to \gamma(\mu^+\mu^-))}{\mathcal{B}(\eta' \to \gamma\gamma)} = 1.761(7)_{\text{stat}}(2)_{\text{sys}} \times 10^{-9}$$
$$\frac{\mathcal{B}(K_L \to \gamma(\mu^+\mu^-))}{\mathcal{B}(K_L \to \gamma\gamma)} \approx 1.26(2)_{\text{model}} \times 10^{-9}$$

REDTOP: $2 \times 10^{12} \eta \rightarrow 80$ events!²⁴ ($\epsilon = 10\%$) Near-future experiments could also probe $\eta', K_L^{25}, K_S, \cdots$ Discovery would constrain on $F_{\gamma^*}(q^2)$

²⁴YJ and HL, in prep.

 25 Y. Ji and H. Lamm. "Discovering True Muonium in $K_L \to (\mu^+\mu^-)\gamma$ ". In: (2017). arXiv: 1706.04986 [hep-ph].

Henry Lamm

- **1** The Muon Problem & $(\mu^+\mu^-)$
- 2 Predicting
- 3 Discovering
- 4 Conclusions

E > 4 E >

The future looks bright

- Your favorite **new physics** can be severely constrained with true muonium
- A theoretical program is underway to reduce the **uncertainty** in observables to $\mathcal{O}(100 \text{ MHZ})$
- Contributions possible to a_{μ} and $\sin \theta_W$
- Most promising experimental outlook in 56 years!