Onset of η **-meson binding** Exotic Atoms & Related Topics (EXA2017), Vienna Avraham Gal Racah Institute of Physics, Hebrew University, Jerusalem η nuclear quasibound states E. Friedman, A. Gal, J. Mareš, PLB 725 (2013) 334 A.Cieplý, E.Friedman, A.Gal, J. Mareš, NPA 925 (2014) 126 Review: A. Gal et al., Acta Phys. Polon. B 45 (2014) 673 **Onset of** η **nuclear binding in He** N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345 N.Barnea, B.Bazak, E.Friedman, A.Gal, PLB 771 (2017) 297 N. Barnea, E. Friedman, A. Gal, NPA 968 (2017) 35

Background & Motivation

- The ηN s-wave interaction below N*(1535) is attractive in a πN − ηN model [Bhalelao–Liu (1985)]. Bound states of η(548) in A≥12 nuclei could exist [Haider–Liu (1986)].
- Chiral N*(1535) meson-nucleon coupled channel models were introduced by Kaiser, Weise et al (1995-1997) and subsequently by Oset et al (2002). These & other models have been used to calculate η–nuclear quasibound states.
- Exp. searches for such states with proton, pion or photon induced η production reactions are inconclusive.
 For the onset of binding, Krusche & Wilkin (2015) state:
 "The most straightforward (but not unique) interpretation of the data is that the η d system is unbound, the η⁴He is bound, but that the η³He case is ambiguous."

Hints from η^{3} He production

Fitted dp $\rightarrow \eta^{3}$ He x-sections below 2 MeV vs. experiment. Remarkable energy dependence, suggesting a nearby S-matrix pole could be in action. Deduced a(η^{3} He) excludes a quasibound state pole.

Xie-Liang-Oset-Moskal-Skurzok-Wilkin, PRC 95 (2017) 015202 $a(\eta^{3}He) = [-(2.23\pm1.29)+i(4.89\pm0.57)] \text{ fm}$

• Would η^{4} He be bound? NOT seen in dd $\rightarrow {}^{3}$ He+N+ π [WASA-at-COSY NPA 959 (2017) 102]. Argued to be more UNBOUND than η^{3} He [Fix-Kolesnikov, PLB 772 (2017) 663] owing to a stronger subthreshold suppression in 4 He. η nuclear quasibound states

$f_{\eta N}(\sqrt{s})$ from K-matrix & N^{*}(1535) chiral models

	$\mathbf{a}_{\eta N}$ (fm) model dependence					
	a	M1	M2	\mathbf{GW}	\mathbf{GR}	CS
	${ m Re}$	0.22	0.38	0.96	0.26	0.67
	Im	0.24	0.20	0.26	0.24	0.20
	Mai	et al.	PRD	86 (20	(012) 09	94033
Green-Wycech PRC 71 (2005) 014001						
Garcia-Recio et al. PLB 550 (2002) 47						
Cieply-Smejkal, NPA 919 (2013) 46						

- Re $a_{\eta N}$ varies from 0.2 to 1.0 fm, Im $a_{\eta N}$: 0.2–0.3 fm.
- M1, M2, GW free-space models; GR, CS in-medium.
- Strong subthreshold fall-off in both Re $f_{\eta N}$ and Im $f_{\eta N}$.
- In-medium: E dependence, Pauli blocking, self energies.

Self-consistency in mesic-atom & nuclear calculations Cieplý-Friedman-Gal-Gazda-Mareš, PLB 702 (2011) 402

$$s_{\eta N} = (\sqrt{s_{\text{th}}} - B_{\eta} - B_{N})^{2} - (\vec{p}_{\eta} + \vec{p}_{N})^{2} < s_{\text{th}}$$
$$\sqrt{s_{\eta N}} \to E_{\text{th}} - B_{N} - B_{\eta} - \xi_{N} \frac{p_{N}^{2}}{2m_{N}} - \xi_{\eta} \frac{p_{\eta}^{2}}{2m_{\eta}}$$
$$\xi_{N(\eta)} = \frac{m_{N(\eta)}}{(m_{N} + m_{\eta})} \qquad \frac{p_{\eta}^{2}}{2m_{\eta}} \sim -V_{\eta} - B_{\eta}$$

 η is not at rest!

 $\mathbf{E}_{\eta N}$ subthreshold shift vs. nuclear density in $\mathbf{1s}_{\eta}^{40}\mathbf{Ca}$.

A dominant in-medium effect.

Cieplý-Friedman-Gal-Mareš, NPA 925 (2014) 126

In-medium ηN amplitudes Friedman-Gal-Mareš, PLB 725 (2013) 334 Cieplý-Friedman-Gal-Mareš, NPA 925 (2014) 126

• KG equation and self-energies:

 $\begin{bmatrix} \nabla^2 + \tilde{\omega}_{\eta}^2 - m_{\eta}^2 - \Pi_{\eta}(\omega_{\eta}, \rho) \end{bmatrix} \psi = 0$ $\tilde{\omega}_{\eta} = \omega_{\eta} - i\Gamma_{\eta}/2, \quad \omega_{\eta} = m_{\eta} - B_{\eta}$ $\Pi_{\eta}(\omega_{\eta}, \rho) \equiv 2\omega_{\eta}V_{\eta} = -4\pi \frac{\sqrt{s}}{m_{N}}f_{\eta N}(\sqrt{s}, \rho)\rho$

- Pauli blocking (Waas-Rho-Weise NPA 617 (1997) 449): $f_{\eta N}^{\text{WRW}}(\sqrt{s},\rho) = \frac{f_{\eta N}(\sqrt{s})}{1+\xi(\rho)(\sqrt{s}/m_N)f_{\eta N}(\sqrt{s})\rho}, \quad \xi(\rho) = \frac{9\pi}{4p_F^2}I(\tilde{\omega}_{\eta})$
- $N^*(1535) \Rightarrow$ energy dependent $f_{\eta N}(\sqrt{s})$. In medium \Rightarrow go subthreshold: $\delta\sqrt{s} = \sqrt{s} - \sqrt{s_{\text{th}}}$ $\delta\sqrt{s} \approx -B_N \frac{\rho}{\bar{\rho}} - \xi_N B_\eta \frac{\rho}{\rho_0} - \xi_N T_N (\frac{\rho}{\bar{\rho}})^{2/3} + \xi_\eta \text{Re } V_\eta(\sqrt{s},\rho)$
- A self-consistency cycle in $\delta\sqrt{s}$ for given ρ .

Model dependence I

- E dependence treated self consistently.
- Larger Re $a_{\eta N} \Rightarrow$ larger B_{η} .
- Widths are unrelated to Im $a_{\eta N}$.

Model dependence II

- ⟨δ√s⟩ goes deeper into subthreshold, thereby reducing further B_{1s_η} & Γ_{1s_η}.
- GR's widths are too large to resolve η bound states. Why $\Gamma_{\eta}(GR) \gg \Gamma_{\eta}(CS)$ for similar Im $a_{\eta N}$?

Model predictions for small widths

- Widths of only a few MeV in each of these models.
- What makes the subthreshold values of Im $f_{\eta N}$ sufficiently small to generate small widths?

Onset of η nuclear binding
N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345
N.Barnea, B.Bazak, E.Friedman, A.Gal, PLB 771 (2017) 297
N. Barnea, E. Friedman, A. Gal, NPA 968 (2017) 35

ηN model input

• Derive local, energy dependent potentials $v_{\eta N}(E;r)$ that reproduce $F_{\eta N}(E)$ below threshold, for use in solving the $\eta NN, \eta NNN, \eta NNNN$ few-body Schroedinger equations.

 $\mathbf{F}_{\eta N}(\mathbf{E}) \Rightarrow \mathbf{v}_{\eta N}(\mathbf{E})$ in models GW & CS

Strength b(E) of effective potential $\mathbf{v}_{\eta N}(\mathbf{E})$ at E < 0 $\mathbf{v}_{\eta N}(\mathbf{E};\mathbf{r}) = -\frac{4\pi}{2\mu_{\eta N}} \mathbf{b}(\mathbf{E}) \left(\frac{\Lambda}{2\sqrt{\pi}}\right)^3 \exp\left(-\frac{\Lambda^2 r^2}{4}\right)$

• Scale Λ is inversely proportional to the range of $\mathbf{v}_{\eta N}$.

 v_{ηN} is a regulated contact term in π-less EFT which for Λ ≤ m_ρ ≈ 4 fm⁻¹ replaces vector-meson exchange.

Energy dependence in η nuclear few-body systems

- $N^*(1535)$ makes near-threshold $f_{\eta N}(\sqrt{s})$ & input potential $v_{\eta N}(\sqrt{s})$ strongly energy dependent. $s = (\sqrt{s_{\text{th}}} - B_{\eta} - B_N)^2 - (\vec{p}_{\eta} + \vec{p}_N)^2 < s_{\text{th}}$
- Expanding NR near $\sqrt{s_{\text{th}}}$ & evaluating $\langle \delta \sqrt{s} \rangle$: $\langle \delta \sqrt{s} \rangle = -\frac{B}{A} + \frac{A-1}{A}E_{\eta} - \xi_N \frac{1}{A}\langle T_A \rangle - \xi_\eta \left(\frac{A-1}{A}\right)^2 \langle T_\eta \rangle$, $\delta \sqrt{s} \equiv \sqrt{s} - \sqrt{s_{\text{th}}}, \quad E_{\eta} = \langle H - H_A \rangle, \quad \xi_{N(\eta)} \equiv \frac{m_{N(\eta)}}{(m_N + m_\eta)}.$ Agrees to O(1/A) with optical-model limit.
- Self-consistency: output $\langle \sqrt{s} \rangle = \text{input } \sqrt{s}$.
- Near threshold $E_{\eta} \& \langle T_{\eta} \rangle \to 0$, yet $\langle \delta \sqrt{s} \rangle_{\text{th}} \neq 0$. Similarly, $\langle \delta \sqrt{s} \rangle_{\text{th}} \neq 0$ in kaonic atoms, starting with $K^- d$: $\langle \delta \sqrt{s} \rangle_{\text{th}} = -\frac{B_d}{2} - \frac{0.655}{2} \langle T_d \rangle = -4.9$ MeV.

Recent SVM results for $\eta^{3,4}$ He

Self consistency plot

 η^{4} He bound-state energy E, $\langle \delta \sqrt{s} \rangle$ & $\langle H_{N} = H_{A} \rangle$, for AV4' \mathbf{v}_{NN} & GW $\mathbf{v}_{\eta N}$ (E) with scale Λ =4 fm⁻¹.

- Stochastic Variational Method calculations with correlated Gaussian trial wavefunctions, resulting in:
- ηd is definitely unbound in both GW and CS (2015).
- η^{3} He is nearly or just bound in GW & unbound in CS.
- η^{4} He is bound in GW and just or nearly bound in CS.

Scale dependence; semi-realistic NN

 \mathbf{B}_{η} as a function of $1/\Lambda$

- These bindings will decrease by ≤ 0.3 MeV when Im v is added. GW just binds η^{3} He, & definitely binds η^{4} He.
- AV4p (Argonne) more realistic than MNC (Minnesota).
- CS does not bind η^{3} He & is unlikely to bind η^{4} He.

Scale dependence; pionless EFT at LO

- Nuclear dynamics generated from two NN & one NNN contact terms (CT). NNN CT averts ³He collapse.
- Add one ηN & one ηNN CT; given no ηNN datum, use $CT(\eta NN)=CT(NNN)$ to start with.

Pionless EFT at LO; η NN CT

Dependence of $\mathbf{B}_{\eta}(\Lambda)$ on choice of ηNN CT from Erratum to PLB 771 (2017) 297

• $\eta NN = NNN CTs vs.$ fitting to assumed $B_{\eta}(\eta NN) = 0$.

Appreciable model dependence for Λ ≤ m_ρ ≈ 4 fm⁻¹.
 Need data beyond ηN modeling.

Summary

- Subthreshold behavior of f_{ηN} is crucial in studies of η-nuclear bound states to decide whether (i) such states exist, (ii) can they be resolved (i.e. widths), and (iii) which nuclear targets and reactions to try.
- Binding η³He requires a minimum value of Re a_{ηN} close to 1 fm, yielding then a few MeV B_η(η⁴He). Binding η⁴He requires a lower value of Re a_{ηN}, roughly exceeding 0.7 fm. Calculated widths of near-threshold atates are a few MeV.
- Thanks to my collaborators N. Barnea, B. Bazak, A. Cieplý, E. Friedman, J. Mareš