

Antimo Palano INFN and University of Bari, Italy^(*) On behalf of the BaBar Collaboration

Outline

- Measurement of the I=1/2 $K\pi S$ -wave amplitude from a Dalitz plot analysis of η_c decays in two-photon interactions.
- Dalitz plot analysis of three J/ψ three-body hadronic decays.

EXA 2017 - International Conference on Exotic Atoms and Related Topics, Wien, September 11-15, 2017

(*) Work supported in part by Jefferson Lab, VA, USA

The $K\pi$ S-wave from η_c decays

 \Box Charmonium decays are used to obtain new information on light meson spectroscopy.

 \Box In two-photon interactions we select events in which the e^+ and e^- beam particles are scattered at small angles and remain undetected. Require $p_T < 0.08 \ GeV/c$.

□ We have studied the following final states. □ $\eta_c \rightarrow K_S^0 K^+ \pi^-$,12849 evts with (64.3 ± 0.4)% purity. □ $\eta_c \rightarrow K^+ K^- \pi^0$, 6494 evts with (55.2±0.6)% purity. □ $\eta_c \rightarrow K^+ K^- \eta$, 1161 evts with (76.1±1.3)% purity.

 \Box Purity=Signal/(Signal + Background)

Phys.Rev. D89 (2014) 112004, Phys.Rev. D93 (2016) 012005

Branching fraction and Dalitz plots.

 \Box We measure:

$$\mathcal{R}(\eta_c) = \frac{\mathcal{B}(\eta_c \to K^+ K^- \eta)}{\mathcal{B}(\eta_c \to K^+ K^- \pi^0)} = 0.571 \pm 0.025 \pm 0.051$$

 \Box Dalitz plots.

 \Box Dominated by the presence of scalar mesons.

 \Box In particular, strong contribution from $K_0^*(1430)$ in the three Dalitz plots.

$\eta_c \rightarrow \eta K^+ K^-$ Dalitz plot analysis, Isobar model.

\Box Unbinned maximum likelihood fits.

 \Box Resonances described by Breit-Wigner functions.

(D. Asner, Review of Particle Physics", Phys. Lett. B 592, 1 (2004)).

 \Box Results from the Dalitz analysis and fit projections.

 \Box Charge conjugated amplitudes symmetrized.

Final state	Fraction $\%$	Phase (radians)
$f_0(1500)\eta$	$23.7 \pm 7.0 \pm 1.8$	0.
$f_0(1710)\eta$	$8.9 \pm 3.2 \pm 0.4$	$2.2 \pm 0.3 \pm 0.1$
$f_0(2200)\eta$	$11.2 \pm 2.8 \pm 0.5$	$2.1~{\pm}~0.3~{\pm}~0.1$
$f_0(1350)\eta$	$5.0 \pm 3.7 \pm 0.5$	$0.9~{\pm}~0.2~{\pm}~0.1$
$f_0(980)\eta$	$10.4 \pm 3.0 \pm 0.5$	$-0.3 \pm 0.3 \pm 0.1$
$f_2^{\prime}(1525)\eta$	$7.3 \pm 3.8 \pm 0.4$	$1.0~{\pm}~0.1~{\pm}~0.1$
$K_0^*(1430)^+K^-$	$16.4 \pm 4.2 \pm 1.0$	$2.3 \pm 0.2 \pm 0.1$
$K_0^*(1950)^+K^-$	$2.1 \pm 1.3 \pm 0.2$	$-0.2 \pm 0.4 \pm 0.1$
NR	$15.5 \pm 6.9 \pm 1.0$	$-1.2 \pm 0.4 \pm 0.1$
Sum	$100.0 \pm 11.2 \pm 2.5$	
χ^2/ u	87/65	

□ Largest amplitudes are $f_0(1500)\eta$ and $K_0^*(1430)K$. □ First observation of $K_0^*(1430) \rightarrow \eta K$.

$\eta_c \to \pi^0 K^+ K^-$ Dalitz analysis, Isobar model.

Final state	Fraction $\%$		Phase (radians)
$K_0^*(1430)^+K^-$	$33.8 \pm 1.9 \pm$	0.4	0.
$K_0^*(1950)^+K^-$	$6.7 \pm 1.0 \pm$	0.3	$-0.67 \pm 0.07 \pm 0.03$
$K_2^*(1430)^+K^-$	$6.8 \pm 1.4 \pm$	0.3	$-1.67 \pm 0.07 \pm 0.03$
$a_0(980)\pi^0$	$1.9 \pm 0.1 \pm$	0.2	$0.38 \pm 0.24 \pm 0.02$
$a_0(1450)\pi^0$	$10.0 \pm 2.4 \pm$	0.8	$-2.4 \pm 0.05 \pm 0.03$
$a_2(1320)\pi^0$	$2.1~\pm~~0.1~\pm$	0.2	$0.77 \pm 0.20 \pm 0.04$
NR	$24.4~\pm 2.5~\pm$	0.6	$1.49~{\pm}~0.07~{\pm}~0.03$
Sum	$85.8 \pm 3.6 \pm$	1.2	
χ^2/ν	212/13	0	

\Box Results from the Dalitz analysis and fit projections.

□ Largest amplitudes are $K_0^*(1430)K$ and $a_0(1450)\pi^0$. □ $K^*(890)$ contribution entirely from background. □ No spin-one resonances expected in $\gamma\gamma$ collisions.

 \Box We measure:

$$\frac{\mathcal{B}(K_0^*(1430) \to \eta K)}{\mathcal{B}(K_0^*(1430) \to \pi K)} = \mathcal{R}(\eta_c) \frac{f_{\eta K}}{f_{\pi K}} = 0.092 \pm 0.025^{+0.010}_{-0.025}$$

where $f_{\pi K}$ denotes $f_{\pi^0 K}$ fraction after correcting for the $K^0 \pi$ decay mode.^{m²(K \pi^0)} (GeV²/c⁴)</sup>

Model Independent Partial Wave Analysis

(Phys. Rev. D 73, 032004 (2006)).

 \Box The $K\pi$ S-wave (A_1) is taken as the reference amplitude.

$$A = A_1 + c_2 A_2 e^{i\phi_2} + c_3 A_3 e^{i\phi_3} + \dots$$

 \Box The $K\pi$ mass spectrum is divided into 30 equally spaced mass intervals 60 MeV wide and for each bin we add to the fit two new free parameters, the amplitude and the phase of the $K\pi$ *S*-wave (constant inside the bin).

 \Box Interference between the two $K\pi$ modes is determined by Isospin conservation.

 \Box The $K_2^*(1420)$, $a_0(980)$, $a_0(1400)$, $a_2(1310)$, ... contributions are modeled as relativistic Breit-Wigner functions multiplied by the corresponding angular functions.

 \square Backgrounds are fitted separately and interpolated into the η_c signal regions.

Dalitz plots mass projections

 \Box Dalitz plot projections with fit results for $\eta_c \to K_S^0 K^+ \pi^-$ (top) and $\eta_c \to K^+ K^- \pi^0$ (bottom)

 \Box Shaded is contribution from the interpolated background.

Fit fractions from the MIPWA. Comparison with the Isobar Model

	$\eta_{\mathbf{c}} ightarrow \mathbf{K_S^0} \mathbf{K^+} \pi^-$	$\eta_{\mathbf{c}} ightarrow \mathbf{K}^{+} \mathbf{K}^{-} \pi^{0}$
Amplitude	Fraction $(\%)$	Fraction $(\%)$
$(K\pi \ S$ -wave) K	$107.3 \pm 2.6 \pm 17.9$	$125.5 \pm 2.4 \pm 4.2$
$a_0(1950)\pi$	$3.1 \pm 0.4 \pm 1.2$	$4.4 \pm 0.8 \pm 0.7$
$K_2^* (1430)^0 K$	$4.7 \pm 0.9 \pm 1.4$	$3.0 \pm 0.8 \pm 4.4$
$+a_0(980), a_0(1450), a_0(1950)$		
$+a_2(1320), K_2^*(1430)$		
χ_2/N_{cells}	$301/254{=}1.17$	$283.2/233{=}1.22$
	Isobar Model	
$(K_0^*(1430)K)+$	73.6 ± 3.7	63.6 ± 5.6
$(K_0^*(1950)K) +$		
Nonresonant		
$+a_0(980), a_0(1450), a_0(1950)$		
$+a_2(1320), K_2^*(1430)$		
χ_2/N_{cells}	$467/256{=}1.82$	$383/233{=}1.63$

 \square For MIPWA, good agreement between the two η_c decay modes.

 \Box ($K\pi \ S$ -wave)K amplitude dominant with small contributions from $K_2^*(1430)^0 K$ and $a_0(1950)\pi$. \Box Good description of the data with MIPWA.

 \Box Worse description of the data with the Isobar Model.

The I=1/2 $K\pi$ S-wave

□ Fitted amplitude and phase. Average systematic uncertainty is 16%. □ Red: $\eta_c \to K^+ K^- \pi^0$. Black: $\eta_c \to K_S^0 K^+ \pi^-$. □ Clear $K_0^*(1430)$ resonance and corresponding phase motion. □ At high mass broad $K_0^*(1950)$ contribution.

 \Box Dashed lines are $\Lambda \eta$ and $\Lambda \eta$ thresholds.

 \Box Good agreement between the two η_c decay modes.

(LASS: Nucl. Phys. B **296**, 493 (1988)), (E791: Phys. Rev. D **73**, 032004 (2006)), (K.M. Watson, Phys. Rev. 88, 1163 (1952))

Overall fit of LASS and η_c data.

□ K-matrix fit. (A. Palano, M. Pennington, arXiv:1701.04881)

Data fitted in terms of Real and Imaginary parts of the complex amplitudes.
Solution A for the LASS data.

 \Box Curves are fit results. Red: Imaginary, Blue: Real.

Overall K-matrix fit of LASS and η_c data.

 \Box Measured pole positions.

Pole 1	E_{P1}	=	$659 - i302 \mathrm{MeV}$	${ m onSheetII},$
Pole 2	E_{P2}	=	$1409 - i128 \mathrm{MeV}$	on Sheet III,
Pole 3	E_{P3}	=	$1768 - i107 \mathrm{MeV}$	on Sheet III.

 \Box Pole 1 is identified with the κ , the pole position of which was found to be at $[(658 \pm 7) - i \ (278 \pm 13)]$ MeV, in the dispersive analysis of (arXiv:0310283, Eur.Phys.J. C33, 409 (2004)).

 \square Pole 2 is identified with $K_0^*(1430)$, to be compared with $[(1438 \pm 8 \pm 4) - i (105 \pm 20 \pm 12)]$ MeV using the Breit-Wigner form.

 \Box Pole 3 may be identified with the $K_0^*(1950)$ with a pole mass closer to that of the reanalysis of the LASS by Anisovich (Phys. Lett.B413, 137 (1997)) with a pole at $E = (1820 \pm 20) - i(125 \pm 50)$ MeV.

 \Box For pole 2, the $K_0^*(1430)$, we have a ratio of $K\eta$ to $K\pi$ decay of 0.05 consistent with the branching ratio of $(0.092 \pm 0.025^{+0.010}_{-0.025})$ determined from the Dalitz plot analysis of $\eta_c \to K^+ K^- \eta/\pi^0$ decays.

Dalitz plot analysis of $J/\psi \rightarrow three \ body \ decays$ $\Box J/\psi$ samples are obtained from the Initial State Radiation (ISR) process. (Phys.Rev. D95 (2017), 072007) \Box Only $J^{PC} = 1^{--}$ states can be produced. \square We study the following reactions: $e^+e^- \rightarrow \gamma_{\rm ISR} \pi^+\pi^-\pi^0$, $e^+e^- \rightarrow \gamma_{\rm ISR} K^+K^-\pi^0,$ 1400 events/(0.2 (GeV²/c⁴) $e^+e^- \rightarrow \gamma_{\rm ISR} K^0_S K^{\pm} \pi^{\mp},$ BaBar 1200 $J/\psi \rightarrow \pi^{+}\pi^{-}\pi^{0}$ where γ_{ISR} indicates the (undetected) ISR photon. 1000 800 \Box We compute: 600 $M_{\rm rec}^2 \equiv (p_{e^-} + p_{e^+} - p_{h1} - p_{h2} - p_{h3})^2$ 400 200 where $h = \pi/K/K_S^0$. This quantity should peak near zero for ISR ever -10 -5 0 10 M_{rec}^2 (GeV²/c⁴) \square Plot of $M_{\rm rec}^2$ in the J/ψ signal region.

In red is Monte Carlo simulation.

J/ψ signals and branching fractions

□ We select events in the ISR region by requiring $|M_{\rm rec}^2| < 2 \ GeV^2/c^4 \ (|M_{\rm rec}^2| < 1.5 \ GeV^2/c^4).$ □ We fit the mass spectra using the Monte Carlo resolution functions described by a Crystal Ball+Gaussian functions and obtain the yields:

J/ψ	Signal region	Event	Purity
decay mode	$({ m GeV}/c^2)$	yields	%
$\pi^+\pi^-\pi^0$	3.028-3.149	20417	91.3 ± 0.2
$K^+K^-\pi^0$	3.043 - 3.138	2102	88.8 ± 0.7
$K^0_S K^{\pm} \pi^{\mp}$	3.069 - 3.121	3907	93.1 ± 0.4

\Box We measure the following branching fractions:

$$\mathcal{R}_{1} = \frac{\mathcal{B}(J/\psi \to K^{+}K^{-}\pi^{0})}{\mathcal{B}(J/\psi \to \pi^{+}\pi^{-}\pi^{0})} = 0.120 \pm 0.003 \text{(stat)} \pm 0.009 \text{(sys}$$

$$\mathcal{R}_2 = \frac{\mathcal{B}(J/\psi \to K_S^0 K^{\perp} \pi^+)}{\mathcal{B}(J/\psi \to \pi^+ \pi^- \pi^0)} = 0.265 \pm 0.005 \text{(stat)} \pm 0.021 \text{(sys)}$$

 $\Box \ \mathcal{R}_1^{PDG} = 0.133 \pm 0.038$, in agreement with our measurement. $\Box \ \mathcal{R}_2^{PDG} = 0.123 \pm 0.033$, which deviates by 3.6 σ from our measurement.

 \Box Shaded is the background interpolated by sidebands.

$$J/\psi \rightarrow \pi^+\pi^-\pi^0 \text{ Dalitz plot analysis with Veneziano model}$$

$$\square \text{ The Veneziano model deals with trajectories rather than single resonances}$$

$$(arXiv:1403.5782, Phys.Lett. N737, 283 (2014)).$$

$$Re \alpha(s) = a + b s$$

$$ps (2350)$$

$$pr (1650)$$

$$pr (1650)$$

$$pr (1650)$$

$$pr (1570)$$

$$pr ($$

 \Box The fit requires n=7, with 19 free parameters.

$J/\psi \rightarrow \pi^+\pi^-\pi^0$ Dalitz plot analysis.

□ Combinatorial π helicity angle vs. $m(\pi\pi)$. □ $m(\pi\pi)$ mass projections for $|\cos\theta_{\pi}| < 0.2$ in log scale.

 \Box The cut removes the reflections from the other combinations.

□ Gray is the background contribution. □ Dashed line: fit without ρ' contributions.

1

events/(0.03 GeV/c²)

10³

10²

10

1

Isobar

2

m(π π) (GeV/c²)

BaBar

$J/\psi \rightarrow \pi^+\pi^-\pi^0$ Dalitz plot analysis.

Final state	Amplitude	Isobar fraction $(\%)$	Phase (radians)	Veneziano fraction (%)
$ ho(770)\pi$	1.	$114.2 \pm 1.1 \pm 2.6$	0.	133.1 ± 3.3
$ ho(1450)\pi$	0.513 ± 0.039	$10.9 \pm 1.7 \ \pm 2.7$	$-2.63 \pm 0.04 \pm 0.06$	0.80 ± 0.27
$ ho(1700)\pi$	0.067 ± 0.007	$0.8 \pm 0.2 \ \pm 0.5$	$-0.46 \pm 0.17 \pm 0.21$	2.20 ± 0.60
$ ho(2150)\pi$	0.042 ± 0.008	$0.04 \pm 0.01 \pm 0.20$	$1.70 \pm 0.21 \pm 0.12$	6.00 ± 2.50
$\omega(783)\pi^0$	0.013 ± 0.002	$0.08 \pm 0.03 \pm 0.02$	$2.78 \pm 0.20 \pm 0.31$	
$\rho_3(1690)\pi$				0.40 ± 0.08
Sum		$127.8 \pm 2.0 \pm 4.3$		142.5 ± 2.8
χ^2/ν		687/519 = 1.32		596/508 = 1.17

 \Box The two models have similar quality, but different fractions. The Veneziano model fits better the data.

 \Box This may indicate that other resonances are contributing to the decay.

$J/\psi \rightarrow K^+ K^- \pi^0$ Dalitz plot analysis

Clear K^{*+} and K^{*-} bands.

Broad structure in the low K^+K^- mass region.

We make use of the Isobar model only.

Final state	fraction $(\%)$	phase (radians)
$K^{*}(892)^{\pm}K^{\mp}$	$92.4 \pm 1.5 \pm 3.4$	0.
$ ho(1450)^{0}\pi^{0}$	$9.3\pm2.0\pm0.6$	$3.78 \pm 0.28 \pm 0.08$
$K^*(1410)^{\pm}K^{\mp}$	$2.3\pm1.1\pm0.7$	$3.29 \pm 0.26 \pm 0.39$
$K_{2}^{*}(1430)^{\pm}K^{\mp}$	$3.5\pm1.3\pm0.9$	$-2.32 \pm 0.22 \pm 0.05$
Total	107.4 ± 2.8	
χ^2/ν	132/137 = 0.96	

\Box Dalitz plot projections:

6

 $J/\psi \rightarrow K^0_S K^{\pm} \pi^{\mp}$ Dalitz plot analysis

 \Box Clear K^{*+} and K^{*-} bands.

□ Broad structure in the low K^+K^- mass region. □ We make use of the Isobar model only.

Final state	fraction $(\%)$	phase (radians)
$K^{*}(892)\bar{K}$	$90.5 \pm 0.9 \pm 3.8$	0.
$\rho(1450)^{\pm}\pi^{\mp}$	$6.3\pm0.8\pm0.6$	$-3.25 \pm 0.13 \pm 0.21$
$K_1^*(1410)\bar{K}$	$1.5\pm0.5\pm0.9$	$1.42 \pm 0.31 \pm 0.35$
$\bar{K_{2}^{*}}(1430)\bar{K}$	$7.1\pm1.3\pm1.2$	$-2.54 \pm 0.12 \pm 0.12$
Total	105.3 ± 3.1	
χ^2/ν	274/217 = 1.26	

\Box Dalitz plot projections:

$\rho(1450)$ branching fraction

 \Box We find the parameters of the low mass $K\bar{K}$ structure consistent with being associated to $\rho(1450)$.

 \Box From the Dalitz-plot analysis of $J/\psi \rightarrow \pi^+\pi^-\pi^0$ we obtain:

$$\mathcal{B}_{1} = \frac{\mathcal{B}(J/\psi \to \rho(1450)^{0}\pi^{0})\mathcal{B}(\rho(1450)^{0} \to \pi^{+}\pi^{-})}{\mathcal{B}(J/\psi \to \pi^{+}\pi^{-}\pi^{0})}$$
$$= (3.6 \pm 0.6(\text{stat}) \pm 0.9(\text{sys}))\%.$$

 \Box From the Dalitz-plot analysis of $J/\psi \rightarrow K^+ K^- \pi^0$ we obtain:

$$\mathcal{B}_{2} = \frac{\mathcal{B}(J/\psi \to \rho(1450)^{0}\pi^{0})\mathcal{B}(\rho(1450)^{0} \to K^{+}K^{-})}{\mathcal{B}(J/\psi \to K^{+}K^{-}\pi^{0})}$$
$$= (9.3 \pm 2.0(\text{stat}) \pm 0.6(\text{sys}))\%.$$

 \Box We therefore obtain:

$$\frac{\mathcal{B}(\rho(1450)^0 \to K^+ K^-)}{\mathcal{B}(\rho(1450)^0 \to \pi^+ \pi^-)} = 0.307 \pm 0.084 \text{(stat)} \pm 0.082 \text{(sys)}$$

Summary

- We show results on the Dalitz plot analyses of $\eta_c \to K_S^0 K^+ \pi^-$, $\eta_c \to K^+ K^- \pi^0$ and $\eta_c \to K^+ K^- \eta$ produced in two-photon interactions. (Phys.Rev. D89 (2014) no.11, 112004, Phys.Rev. D93 (2016) 012005)
- We extract for the first time the I=1/2 Kπ S-wave amplitude and phase using the MIPWA method up to a mass of 2.5 GeV/c². We find a very different amplitude with respect to that measured by previous experiments in different processes.
 (Phys.Rev. D93 (2016) 012005)
- A K-matrix formalism is able to obtain a good description of the I=1/2 $K\pi$ S-wave.

(A. Palano, M. Pennington, arXiv:1701.04881)

• We show results on Dalitz plot analyses of $J/\psi \to \pi^+\pi^-\pi^0$, $J/\psi \to K^+K^-\pi^0$ and $J/\psi \to K_S^0 K^{\pm}\pi^{\mp}$ produced in Initial State Radiation events using the isobar and Veneziano models.

(Phys.Rev. D95 (2017), 072007)