

E2 electric quadrupole spectrum of H2+

Dimitar Bakalov

INRNE, Bulgarian Academy of sciences Presenting results obtained with P. Danev, V. Korobov, and S. Schiller Precision spectroscopy of molecular hydrogen ions (MHI)

Possible types of transitions:

- E1 electric dipole
- E2 electric quadrupole
- Forbidden E1
- 2-photon electric

Precision spectroscopy of MHI

Spectroscopy of heteronuclear ions

Transitions in HD+:

- E1 (electric dipole)
- 2-photon electric
- E2 electric quadrupole

Already evaluated (Korobov, Karr, earlier...):

- QED/relativistic corrections at ppt level,
- HFS at <u>ppm</u> level
- Systematic effects (Zeeman, AC/DC Stark, BBR)

HFS of E2 spectra in HD⁺

Precision spectroscopy of HD⁺

Selection of HF lines for molecular clocks

Precision spectroscopy of H₂⁺

Possible transitions:

- E1 (electric dipole)
 → Forbidden E1
- 2-photon electric
- E2 electric quadrupole

Forbidden E1-transitions in H₂⁺

In molecules with identical nuclei

 $p.(-1)^{L+I+m} = 1$

- L: orbital momentum
- I: total nuclear spin
- p: exchange of nuclei parity. p=1,m=0 in LO appr.

Dipole transitions: forbidden in non-relativistic approximation, but allowed due to parity breaking terms in the spin Hamiltonian.

Forbidden E1-transitions in H₂⁺

First-order corrections to the wave-function of the final state

 $|(pvL)IFJJ_{z}\rangle^{(1)} = \sum |(v'L'p')I'F'JJ_{z}\rangle \frac{\langle (v'L'p')I'F'JJ_{z} | U^{spin}|(pvL)IFJJ_{z}\rangle}{E-E'}$

are coupled by the electric dipole moment to the unperturbed w. f. of the initial state! Transition intensity suppressed by α^2 Calculation of forbidden E1 spectra: in progress

Two-photon transitions in H2+

• Stectrum calculated in earlier works by J.-Ph. Karr, V.I.Korobov, etc.

• Evaluated the main systematic effects (Zeeman, Stark, BBR,...)

• Considered the cases of linear and circular laser light polarization

Precision spectroscopy of H₂⁺

Our current interest:

- E2 electric quadrupole
 - Transition frequencies
 - Transition Intensity

A paper in preparation (with P.Danev, V.Korobov, S.Schiller)

H₂⁺ energy levels

Non-relativistic picture

$$H^{nr} = \sum_{i} \frac{P_i^2}{2m_i} + \sum_{i < j} \frac{Z_i Z_j}{|r_i - r_j|}$$

Accuracy of the non-relativistic values:

Leading order QED & HFS

 $\begin{array}{c|ccccc}
F=3/2 & J=3/2 \\
J=5/2 \\
J=1/2 \\
I=1 \\
F=1/2 \\
J=3/2
\end{array}$

Breit interaction, 1st order S_{p1}+S_{p2}=I, I+S_e=F, F+L=J

$$H = H^{nr} + U^{spin} + U^{rel}$$

Breit contributions in 1st order of P.T.:

Higher order QED & HFS

F = 3/2J = 3/2J = 5/2v=1J = 1/2L=1**I**=1 J=1/2 F = 1/2J = 3/2 Breit interaction, 2nd order, higher order QED terms and relativistic corrections

Various QED and relativistic contributions

Hyperfine structure for odd L

				E		E	arphi		E	φ	E
	F=3/2 $J=3/2$	v L	J =	L-3/2	L - 1/2		L + 1/2			L+3/2	
			F =	3/2	1/2	3/2		1/2	3/2		3/2
	J=5/2	0 1			-910.6980	385.3687	-0.038903	-930.3732	481.9234	-0.0156	474.0763
v=1	J=1/2	1 1			-887.1909	377.9657	-0.037356	-905.7253	468.4956	-0.0151	461.2282
· · ·		2 1			-865.4856	371.2588	-0.035781	-882.9269	456.0493	-0.0145	449.3273
		8 1			-767.8240	344.3925	-0.025481	-779.3412	398.8163	-0.0107	394.8271
I=1		03		341.5241	-894.6020	423.6046	-0.061855	-941.0438	489.4960	-0.0421	507.2270
		$1 \ 3$		336.8955	-871.9908	413.6522	-0.059480	-915.6828	475.5481	-0.0407	492.3526
	F=1/2	$2 \ 3$		332.8336	-851.1450	404.5273	-0.057050	-892.2046	462.6063	-0.0392	478.5158
		33		329.3264	-831.9595	396.1856	-0.054560	-870.4878	450.6022	-0.0376	465.6422
	J=3/2	83		320.0235	-758.1833	365.1210	-0.040899	-785.0303	402.7612	-0.0288	413.6433

Hyperfine structure for even L

v L	J=L-1/2	J = L + 1/2
0 2	-63.2438	42.1625
$1 \ 2$	-59.3574	39.5716
$2 \ 2$	-55.6487	37.0992
3 2	-52.0943	34.7295
4 2	-48.6718	32.4479
5 2	-45.3600	30.2400
0 4	-103.2355	82.5884
1 4	-96.8707	77.4966
2 4	-90.7937	72.6350
3 4	-84.9660	67.9728
4 4	-79.3509	63.4807

External fields effects

$$H = H^{nr} + U^{spin} + U^{rel}$$
$$+ U^{Zee}(B) + U^{St}(E)$$
$$+ U^{Q}(\nabla E) + \dots$$

For typical external fields: B~1G, E=200 V/m

E2-transition probability (Nrel)

$$\mathcal{P}_{vLL \to v'L'L'_{z}}(t) = 2\pi t \,\delta(\omega_{fi} - \omega) \frac{\omega_{fi}^{2}}{4\hbar^{2}(2L' + 1)} \langle v'L' || \tilde{Q} || vL \rangle^{2} \left(C_{LL_{z},2q}^{L'L'_{z}} \right)^{2} \left| \tilde{T}^{q} \right|^{2},$$
$$T = (\mathbf{A} \otimes \mathbf{k})^{(2)}, \ \tilde{T}^{q} = \sum_{q_{1}q_{2}} C1q_{1}, 1q_{2}^{2q} \tilde{A}_{0}^{q_{1}} \tilde{k}^{q_{2}}, \ q = L'_{z} - L_{z},$$

Nontrivial calculation: <u>the matrix element</u>! Preceding calculations: Moss *et al.*, Pilon & Baye, Karr, Korobov *et al*.

Comparison with earlier works

Hyperfine structure of E2 spectra

E2-transition probability with HFS

$$\mathcal{P}_{if}(t) = t \frac{\pi}{2\hbar} \delta(E_{v'L'} - E_{vL}) \\ \times \omega_{v'L',vL}^2 \langle v'L' || \tilde{Q} || vL \rangle^2 \\ \times (2J+1) \left(\sum_{IF} (-1)^{J+L+F} \beta_{IF}^{v'L'N'J'} \beta_{IF}^{vLNJ} \left\{ \begin{array}{l} J' \ 2 \ J \\ L \ F \ L' \end{array} \right\} \right)^2 \\ \times \left(C_{JJ_z,2q}^{J'J_z'} \right)^2 |\tilde{T}^q|^2, \quad q = J_z' - J_z \\ \end{array}$$
$$\beta_{IF}^{vLNJ} \colon N \to F', \quad \beta_{IF}^{vLNJ} \to \beta_{F'F}^J = \left\{ \begin{array}{c} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{array} \right\} \\ T = \left(\mathbf{A} \otimes \mathbf{k} \right)^{(2)}, \quad \tilde{T}^q = \sum_{q_1q_2} C 1q_1, 1q_2^{2q} \tilde{A}_0^{q_1} \tilde{k}^{q_2}, \quad q = L_z' - L_z, \end{array}$$

$$\begin{array}{l}
\textbf{1. Constant factor} \\
\mathcal{P}_{if}(t) = \overbrace{t \frac{\pi}{2\hbar} \delta(E_{v'L'} - E_{vL})}^{\text{constant}} \\
\times \omega_{v'L',vL}^2 \langle v'L' || \tilde{Q} || vL \rangle^2 \\
\times (2J+1) \left(\sum_{IF} (-1)^{J+L+F} \beta_{IF}^{v'L'N'J'} \beta_{IF}^{vLNJ} \left\{ \begin{array}{l} J' \ 2 \ J \\ L \ F \ L' \end{array} \right\} \right)^2 \\
\times \left(C_{JJ_z,2q}^{J'J'_z} \right)^2 |\tilde{T}^q|^2, \quad q = J'_z - J_z
\end{array}$$

Difference of the **Coulomb** energies

2. Nonrelativistic factor

$$\begin{aligned} \mathcal{P}_{if}(t) &= \overbrace{t \frac{\pi}{2\hbar} \delta(E_{v'L'} - E_{vL})}_{\times \omega_{v'L',vL}^2} \left| \widetilde{Q} \right| |vL\rangle^2 \\ &\times (2J+1) \left(\sum_{IF} (-1)^{J+L+F} \beta_{IF}^{v'L'N'J'} \beta_{IF}^{vLNJ} \left\{ \begin{array}{l} J' \ 2 \ J \\ L \ F \ L' \end{array} \right\} \right)^2 \\ &\times \left(C_{JJ_z,2q}^{J'J_z'} \right)^2 |\widetilde{T}^q|^2, \quad q = J_z' - J_z \end{aligned}$$

Matrix elements with the non-relativistic wave functions

3. Hyperfine factor

Sum rule: if HF interactions are switched off, nonrelativistic ntensities are reproduces!

4. Laser polarization factor

$$\mathcal{P}_{if}(t) = \underbrace{t \frac{\pi}{2\hbar} \delta(E_{v'L'} - E_{vL})}_{\times \omega_{v'L',vL}^2 \langle v'L' || \tilde{Q} || vL \rangle^2} \xrightarrow{\text{constant}}_{\text{nonrelativistic}} \\ + \text{Hyperfine structure} \\ \times (2J+1) \left(\sum_{IF} (-1)^{J+L+F} \beta_{IF}^{v'L'N'J'} \beta_{IF}^{vLNJ} \left\{ \begin{array}{c} J' \ 2 \ J \\ L \ F \ L' \end{array} \right\} \right)^2 \\ \times \left(C_{JJ_z,2q}^{J'J'_z} \right)^2 |\tilde{T}^q|^2, \quad q = J'_z - J_z \end{aligned}$$

Sum rules:

If the levels are degenerate with respect to J_z , The hyperfine structure is reproduced, and Laser polarization effects disappear

Simple example: hfs of E2-lines

Hyperfine structure of E2-lines

E2 transition rate (intensities) $dP_{i \rightarrow f}/dt =$ $(\pi/2h) \, \delta(E_{v'l}, -E_{vl})$ (e.c.) $\times \, \omega_{v'L'.vL}^{2} \, \langle v'L' ||Q||vL \rangle^{2}$ (nrel) $\times F_{I'S',I'ISJ}$ (hfs) × $\langle J'J'_{7}|JJ_{7},2q\rangle^{2}$ |T^q|², q=J'₇-J₇ (pol) where T=(A⊗k)⁽²⁾

Parameterization of T

Dependence of $|T_q|$ on 4 angles

Euler: α , β ; polarization parameters: θ , φ

$$|\tilde{T}_{\pm 2}|^2 = \frac{1}{64} \sin^2 \beta \ (12 + 4\cos 2\beta - 2\cos 2(\alpha - \theta) + \cos 2(\alpha - \beta - \theta) + \cos 2(\alpha + \beta - \theta)) -2\cos 2(\alpha + \theta) + \cos 2(\alpha - \beta + \theta) + \cos 2(\alpha + \beta + \theta)) -\frac{1}{8}\sin 2\alpha \sin 2\theta \sin^4 \beta \cos \varphi \mp \frac{1}{8}\sin 2\beta \sin 2\theta \sin \beta \sin \varphi$$

$$\begin{split} |\tilde{T}_{\pm 1}|^2 &= \frac{1}{64} (8 + 4\cos 2\beta + 4\cos 4\beta) \\ &- \cos 2(\alpha - \beta - \theta) - \cos 2(\alpha + \beta - \theta) - \cos 2(\alpha - \beta + \theta) - \cos 2(\alpha + \beta + \theta)) \\ &+ \cos 2(\alpha - 2\beta - \theta) + \cos 2(\alpha - 2\beta + \theta) + \cos 2(\alpha + 2\beta - \theta) + \cos 2(\alpha + 2\beta + \theta)) \\ &- \frac{1}{8}\sin 2\alpha \sin 2\theta \sin^2 \beta (1 + \cos 2\beta) \cos \varphi \mp \frac{1}{8}\sin 2\theta (\cos \beta + \cos 3\beta) \sin \varphi \end{split}$$

$$|\tilde{T}_0|^2 = \frac{3}{32}\sin^2 2\beta(2+\cos 2(\alpha-\theta)+\cos 2(\alpha+\theta)) + \frac{3}{16}\sin 2\alpha\sin^2 2\beta\sin 2\theta\cos\varphi$$

No 4th angle in linear polarization

$$\begin{aligned} |T_{\pm 2}|^2 &= \frac{1}{32} \sin^2 \beta \left(6 + \cos(2(\alpha - \theta - \beta)) + \cos(2(\alpha - \theta + \beta)) - 2\cos(2(\alpha - \theta)) + 2\cos(2\beta) \right) \\ |T_{\pm 1}|^2 &= \frac{1}{32} \left(4 + \cos(2(\alpha - \theta - 2\beta)) + \cos(2(\alpha - \theta + 2\beta)) \right) \\ -\cos(2(\alpha - \theta - \beta)) - \cos(2(\alpha - \theta + \beta)) + 2\cos(2\beta) + 2\cos(4\beta)) \\ |T_0|^2 &= \frac{3}{8} \sin^2(2\beta) \cos^2(\alpha - \theta) \end{aligned}$$

No 4th angle in linear polarization

Х

• Only the difference

α - θ

appears in the case of linearly polarization of the laser

• *a* appears for circular or elliptic polarization

Varying φ , $\alpha = 0, \theta = \pi/4, \beta = 0$ B||k, no dependence on φ for B⊥k

Varying φ , $\alpha = 0, \theta = \pi/4, \beta = \pi/4$

Varying α , $\varphi = \pi/2$, $\theta = \pi/4$, $\beta = \pi/4$ No dependence on α for B||k

Varying β , random α , φ ; $\theta = \pi/6$

