

MEASUREMENT OF (ANTI-)HYPERNUCLEI PRODUCTION WITH ALICE AT THE LHC

Stefano Piano on behalf of ALICE Collaboration INFN sez. Trieste

MOTIVATION TO MEASURE (ANTI-)HYPERNUCLEI IN Pb-Pb COLLISIONS WITH ALICE AT THE LHC

ALICE aims to study the formation of Quark-Gluon Plasma, its properties and evolution:

- (anti-)(hyper)nuclei yields are sensitive to the freeze-out temperature due to their large mass (e.g. in the Thermal Model yield scales roughly ~ e^(-M/Tchem))
- ➢ light (anti-)(hyper)nuclei, small binding energy and small ∧ separation energy, e.g. $B_{\Lambda}(^{3}{}_{\Lambda}H = 0.13 \pm 0.05 \text{ MeV})$ [H. Bando et al., Int. J. Mod. Phys. A 5 4021 (1990)] :
 - light (anti-)(hyper)nuclei should dissociate in a medium with high T_{chem} (~156 MeV) and be suppressed
 - light (anti-)(hyper)nuclei production determined by the entropy per baryon (fixed at chemical freeze-out)
 - > if light (anti-)(hyper)nuclei yields equal to thermal model prediction \Rightarrow sign for adiabatic (isentropic) expansion in the hadronic phase
- > A=3 (anti-)(³He, t, ${}^{3}_{\Lambda}$ H), a simple system of 9 valence quarks:
 - > ${}^{3}_{\Lambda}H / {}^{3}He$ and ${}^{3}_{\Lambda}H / t$ (and anti) \Rightarrow Lambda-nucleon correlation (local baryon-strangeness correlation)
 - > t / 3 He (and anti) \Rightarrow local charge-baryon correlation
 - > YN & YY interaction (strangeness sector of hadronic EOS, cosmology, physics of neutron stars)

Anti-nuclei in nature:

> matter–antimatter asymmetry [J.~Adam et al. (ALICE Collaboration), Nature Phys. (2015)] (see Colocci talk)

(ANTI-)(HYPER)NUCLEI PRODUCTION IN URHIC

£

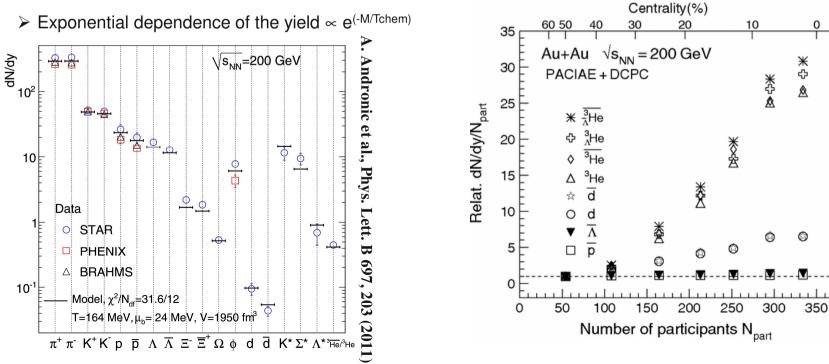
Chen et al.,

Phys.

Rev.

 $\mathbf{\Omega}$

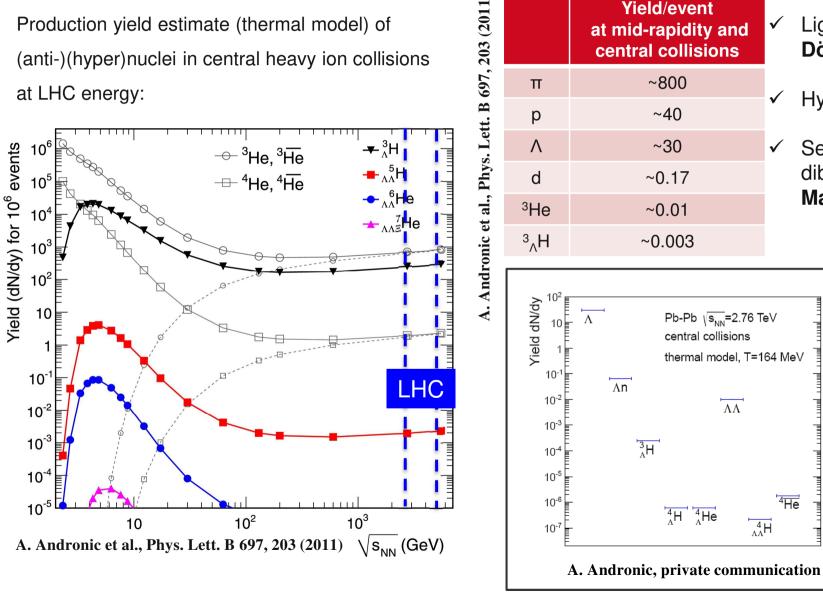
88, 034908


(2013)

Statistical Thermal model

- > Thermodynamic approach to particle production in heavy-ion collisions
- Abundances fixed at chemical freeze-out (T_{chem}) (hyper)nuclei are very sensitive to T_{chem} because of their large mass (M)
- > Exponential dependence of the yield $\propto e^{(-M/Tchem)}$

Coalescence


- > If baryons at freeze-out are close enough in Phase Space an (anti-)(hyper)nucleus can be formed
- \succ (Hyper)nuclei are formed by protons (Λ) and neutrons which have similar velocities after the freeze-out

(ANTI-)(HYPER)NUCLEI PRODUCTION AT LHC

Production yield estimate (thermal model) of (anti-)(hyper)nuclei in central heavy ion collisions at LHC energy:

Light nuclei (see Dönigus talk)

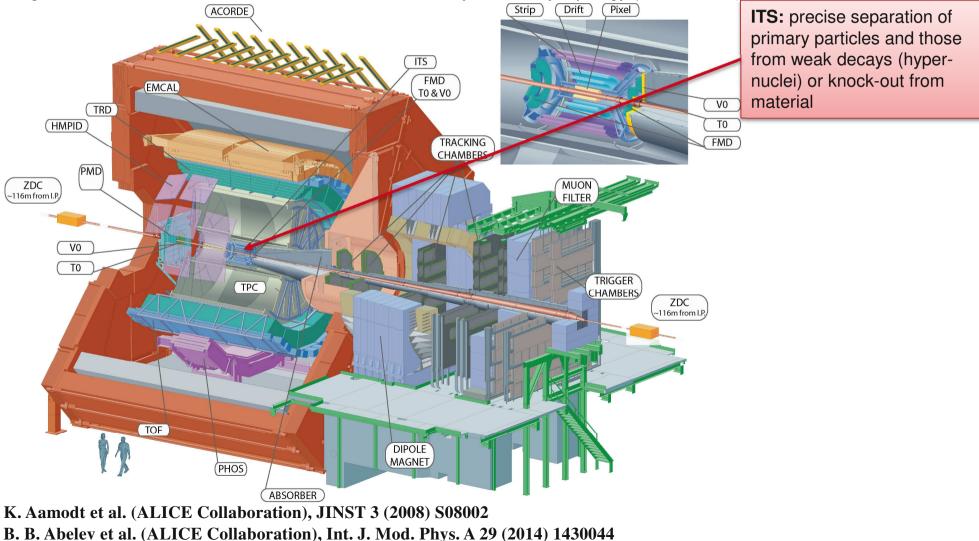
Hypertriton

Yield/event

at mid-rapidity and

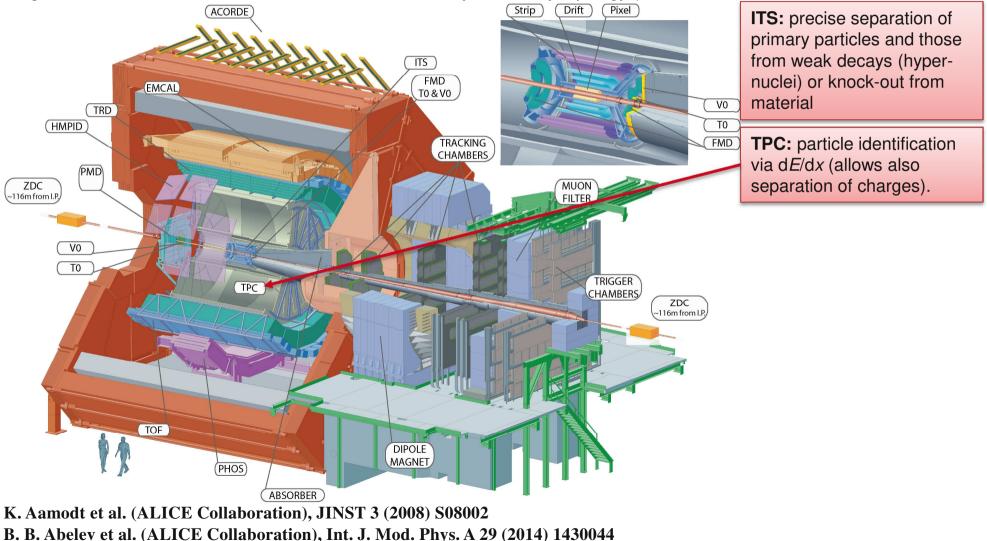
central collisions

~800

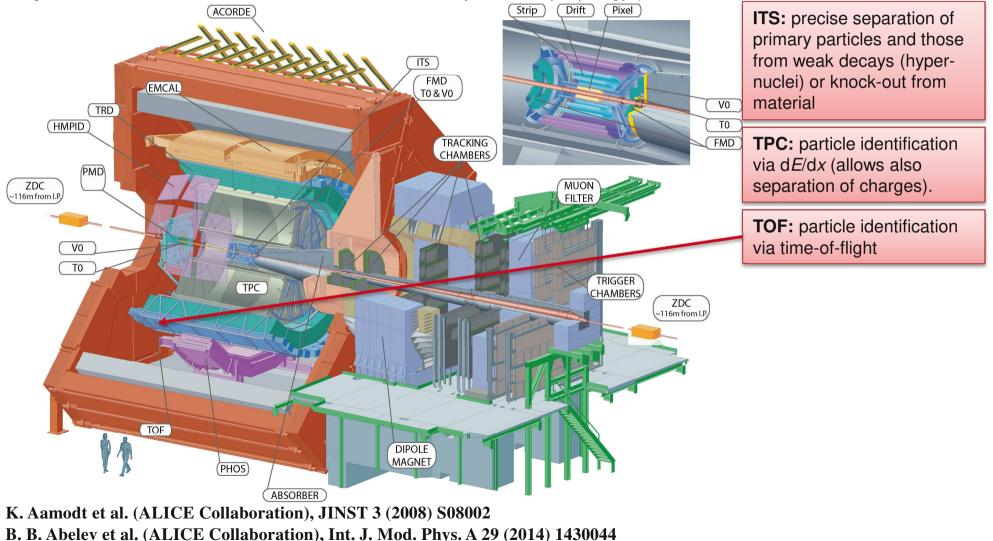

Π

Search for: Λn , $\Lambda \Lambda$ dibaryons (see Mastroserio talk)

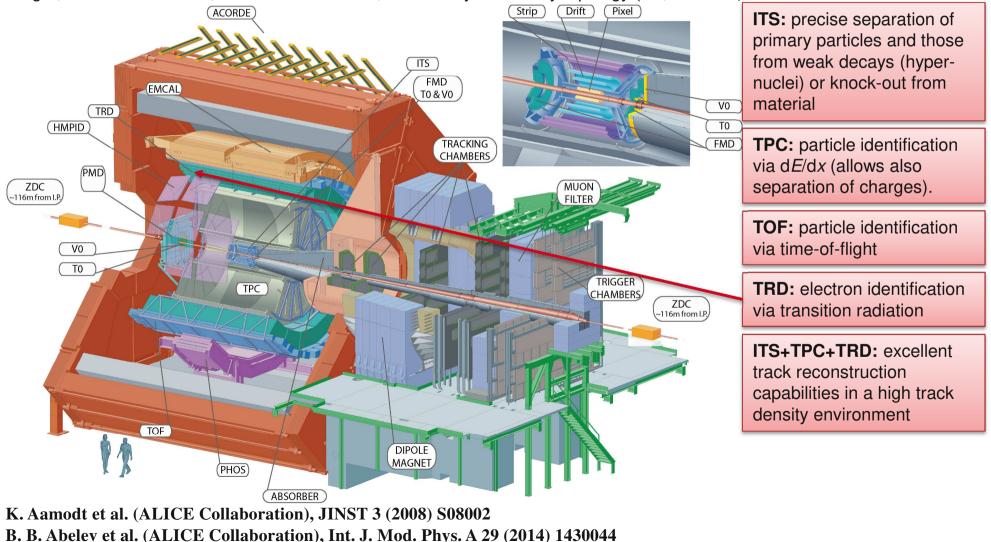
ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-


flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade)

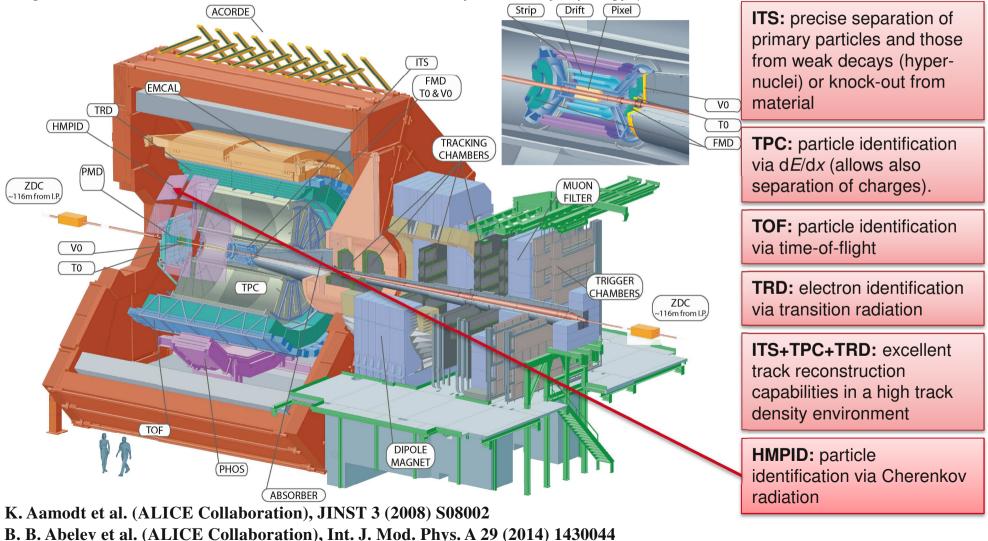
ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-


flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade)

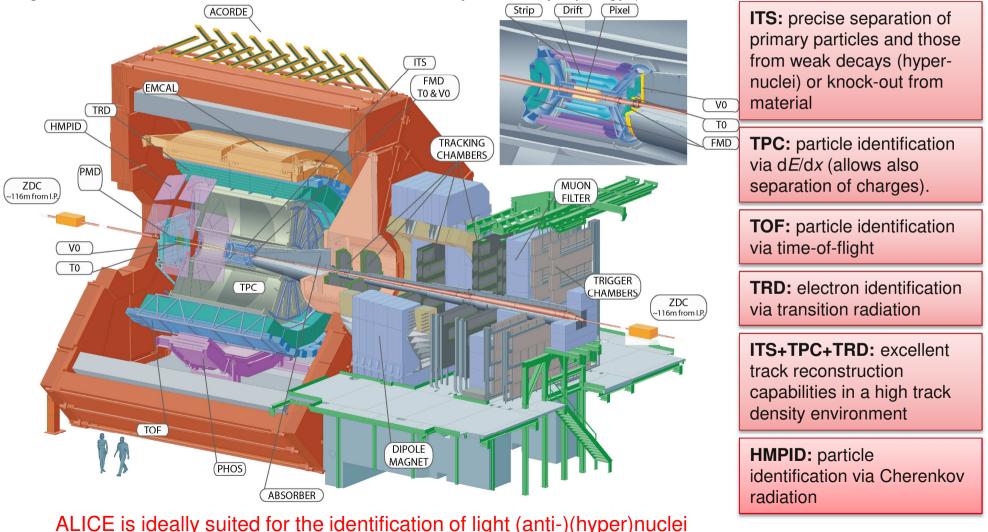
ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

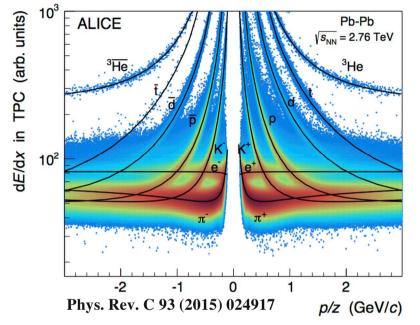

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade)

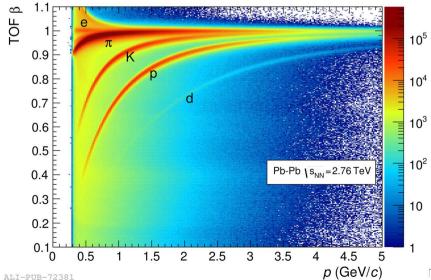
ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-


flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade)

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-


flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade)


ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-


flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade)

ALICE

NUCLEI IDENTIFICATION

Low momenta

Nuclei identification via dE/dx measurement in the TPC:

- dE/dx resolution in central Pb-Pb collisions: ~7%
- Excellent separation of (anti-)nuclei from other particles over a wide momentum range
- About 10 anti-alpha candidates identified out of 23x10⁶ events by combining TPC and TOF particle identification

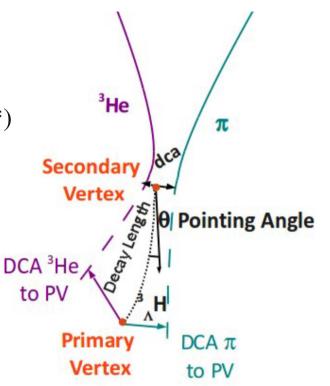
Higher momenta

Excellent TOF performance:

- \succ σ_{TOF} ≈ 85 ps in Pb-Pb collisions allows identification of light nuclei over a wide momentum range
- Velocity measurement with the TOF detector is used to evaluate the m² distribution and to subtract background from the signal in each p_T-bin by fitting the m² distribution

nd Related Topics | 13-09-2017 | Stefano Piano

Decay Channels


$$\frac{{}^{3}_{\Lambda} \mathbf{H} \rightarrow {}^{3} \mathbf{H} \mathbf{e} + \pi^{-}}{{}^{3}_{\Lambda} \overline{\mathbf{H}} \rightarrow {}^{3}_{\Lambda} \overline{\mathbf{H}} \mathbf{e} + \pi^{+}} BR = 0.25 (*)$$

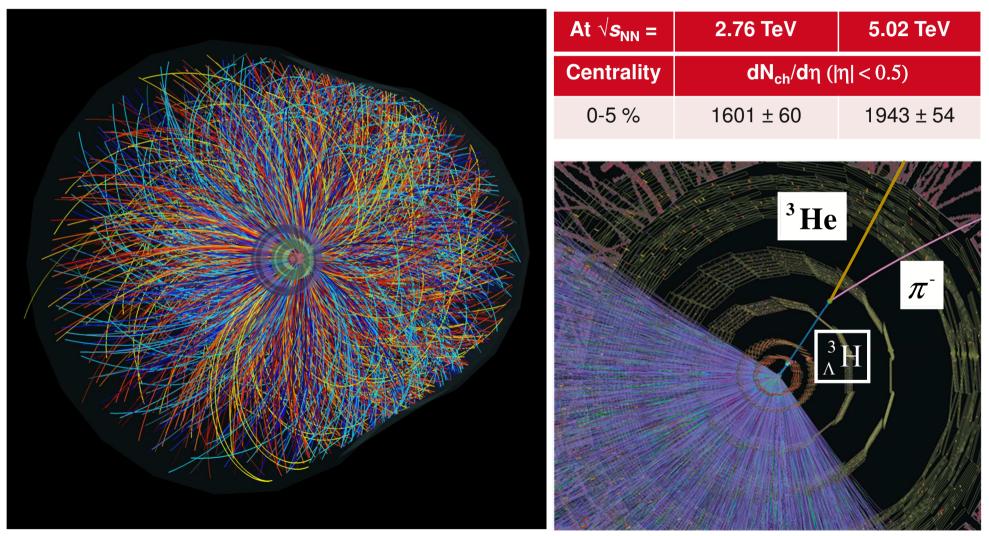
$$\frac{{}^{3}_{\Lambda} \mathbf{H} \rightarrow {}^{3}_{\Lambda} \mathbf{H} + \pi^{0}}{{}^{3}_{\Lambda} \overline{\mathbf{H}} \rightarrow {}^{3}_{\Lambda} \overline{\mathbf{H}} \rightarrow {}^{3}_{\Lambda} \overline{\mathbf{H}} + \pi^{0}}$$

$$\frac{{}^{3}_{\Lambda} \mathbf{H} \rightarrow \mathbf{d} + \mathbf{p} + \pi^{-}_{\Lambda} {}^{3}_{\Lambda} \overline{\mathbf{H}} \rightarrow \overline{\mathbf{d}} + \overline{\mathbf{p}} + \pi^{+}$$

$$\frac{{}^{3}_{\Lambda} \mathbf{H} \rightarrow \mathbf{d} + \mathbf{n} + \pi^{0}_{\Lambda} {}^{3}_{\Lambda} \overline{\mathbf{H}} \rightarrow \overline{\mathbf{d}} + \overline{\mathbf{n}} + \pi^{0}$$

- ${}^{3}_{\Lambda}$ H search via two-body decays into charged particles:
- > Two body decay: lower combinatorial background
- Charged particles: ALICE acceptance for charged particles (|η|<0.9) higher than for neutrals (|η|<0.7)
 Signal Extraction:
- \succ Identify ³He and π
- > Evaluate (³He, π) invariant mass
- > Apply topological cuts in order to:
 - identify secondary decay vertex and
 - reduce combinatorial background

APPLIED CUTS:


- Cos(Pointing Angle) > 0.99
- DCA π to PV > 0.4 cm
- DCA between tracks < 0.7 cm
- (³He,π) *p*_T> 2 GeV/*c*
- |y| ≤ 1
- cτ > 1 cm

(*) Kamada et al., PRC57(1998)4

THE EXPERIMENTAL CHALLENGE

The challenge: extract the ${}^{3}_{\Lambda}$ H signal from an overwhelming background

K. Aamodt et al. (ALICE Collaboration) Phys. Rev. Lett. 106, 032301 (2011) ; J. Adam et al (ALICE Collaboration) Phys. Rev. Lett. 116, 222302 (2016)

Entries/(2.5 MeV/c²

90

80

70

60

50

40

30

20

10

ALICE 10-50%

Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

 $\le p_{-} < 10 \, \text{GeV}/c$

3

98 2.99

Phys. Lett. B 754 (2016) 360-372

Background

-Combined Fit

 $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$

3.01 3.02 3.03 3.04

Invariant mass $({}^{3}\text{He},\pi^{-})(\text{GeV}/c^{2})$

 $\mu = 2.991 \pm 0.001 \pm 0.003 \text{ GeV/c}^2$

 $\sigma = (3.01 \pm 0.24) \times 10^{-3} \text{ GeV/c}^2$

To be compared to literature value:

 μ = 2.99131 ± 0.00005 GeV/c²

[Juric, Nucl. Phys. B 52, 1 (1973)]

Data

Decay Channels

$$\frac{{}^{3}_{\Lambda}H}{{}^{3}_{\Lambda}H} \xrightarrow{3}He + \pi^{-} \qquad \frac{{}^{3}_{\overline{\Lambda}}\overline{H}}{{}^{3}_{\overline{\Lambda}}\overline{H}} \xrightarrow{3}\overline{H}e + \pi^{+} \\ \frac{{}^{3}_{\Lambda}H}{{}^{3}_{\Lambda}H} \xrightarrow{3}H + \pi^{0} \qquad \frac{{}^{3}_{\overline{\Lambda}}\overline{H}}{{}^{3}_{\overline{\Lambda}}\overline{H}} \xrightarrow{3}\overline{H} + \pi^{0} \\ \frac{{}^{3}_{\Lambda}H}{{}^{3}_{\Lambda}H} \xrightarrow{3}d + p + \pi^{-} \qquad \frac{{}^{3}_{\overline{\Lambda}}\overline{H}}{{}^{3}_{\overline{\Lambda}}\overline{H}} \xrightarrow{3}\overline{d} + \overline{p} + \pi^{+} \\ \frac{{}^{3}_{\Lambda}H}{{}^{3}_{\Lambda}H} \xrightarrow{3}d + n + \pi^{0} \qquad \frac{{}^{3}_{\overline{\Lambda}}\overline{H}}{{}^{3}_{\overline{\Lambda}}\overline{H}} \xrightarrow{3}\overline{d} + \overline{n} + \pi^{0}$$

- ³_AH search via two-body decays into charged particles:
- > Two body decay: lower combinatorial background
- Charged particles: ALICE acceptance for charged particles

($|\eta|$ <0.9) higher than for neutrals ($|\eta|$ <0.7)

Signal Extraction:

- > Identify ³He and π
- > Evaluate (³He, π) invariant mass
- > Apply topological cuts in order to:
 - identify secondary decay vertex and
 - reduce combinatorial background
- > Background estimation: π track rotated 20 times

Entries/(2.5 MeV/c²

90

80

70

60

50

40

30

20

10

ALICE 10-50%

 $\leq p_{<} 10 \text{ GeV}/c$

2 99

3

Pb-Pb \slash s_{NN} = 2.76 TeV

Phys. Lett. B 754 (2016) 360-372

□ Background

-Combined Fit

 ${}^{3}_{\overline{\Lambda}}\overline{H} \rightarrow {}^{3}\overline{He} + \pi^{+}$

3.01 3.02 3.03 3.04

Invariant mass $({}^{3}\text{He},\pi^{-})(\text{GeV}/c^{2})$

 $\mu = 2.991 \pm 0.001 \pm 0.003 \text{ GeV/c}^2$

 $\sigma = (3.01 \pm 0.24) \times 10^{-3} \text{ GeV/c}^2$

To be compared to literature value:

 μ = 2.99131 ± 0.00005 GeV/c²

[Juric, Nucl. Phys. B 52, 1 (1973)]

Data

Decay Channels

$${}^{3}_{\Lambda} H \rightarrow {}^{3} H e + \pi^{-} \qquad {}^{3}_{\overline{\Lambda}} \overline{H} \rightarrow {}^{3} \overline{H} e + \pi^{+}$$

$${}^{3}_{\Lambda} H \rightarrow {}^{3} H + \pi^{0} \qquad {}^{3}_{\overline{\Lambda}} \overline{H} \rightarrow {}^{3} \overline{H} + \pi^{0}$$

$${}^{3}_{\Lambda} H \rightarrow d + p + \pi^{-} \qquad {}^{3}_{\overline{\Lambda}} \overline{H} \rightarrow \overline{d} + \overline{p} + \pi^{+}$$

$${}^{3}_{\Lambda} H \rightarrow d + n + \pi^{0} \qquad {}^{3}_{\overline{\Lambda}} \overline{H} \rightarrow \overline{d} + \overline{n} + \pi^{0}$$

- ³_AH search via two-body decays into charged particles:
- > Two body decay: lower combinatorial background
- Charged particles: ALICE acceptance for charged particles

($|\eta|$ <0.9) higher than for neutrals ($|\eta|$ <0.7)

Signal Extraction:

- $\succ\,$ Identify ³He and π
- > Evaluate (³He, π) invariant mass
- > Apply topological cuts in order to:
 - identify secondary decay vertex and
 - reduce combinatorial background
- > Background estimation: π track rotated 20 times

Decay Channels

$$\frac{{}^{3}_{\Lambda}}{}^{3}_{\Lambda}H \rightarrow {}^{3}_{\Lambda}He + \pi^{-} \qquad \frac{{}^{3}_{\Lambda}\overline{H}}{}^{3}_{\Lambda}\overline{H}e + \pi^{+}$$

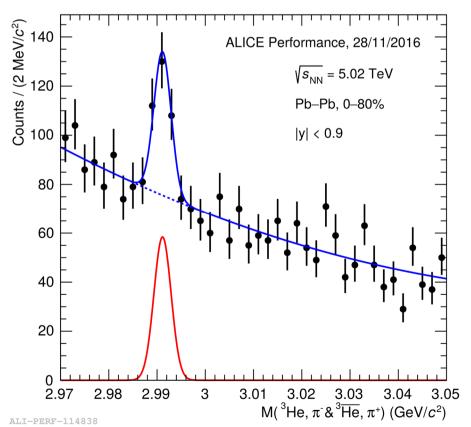
$$\frac{{}^{3}_{\Lambda}}{}^{3}_{\Lambda}H \rightarrow {}^{3}_{\Lambda}H + \pi^{0} \qquad \frac{{}^{3}_{\Lambda}\overline{H}}{}^{3}_{\Lambda}\overline{H} \rightarrow {}^{3}_{\Lambda}\overline{H} + \pi^{0}$$

$$\frac{{}^{3}_{\Lambda}}{}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-} \qquad \frac{{}^{3}_{\Lambda}\overline{H}}{}^{3}_{\Lambda}\overline{H} \rightarrow \overline{d} + \overline{p} + \pi^{+}$$

$$\frac{{}^{3}_{\Lambda}}{}^{3}_{\Lambda}H \rightarrow d + n + \pi^{0} \qquad \frac{{}^{3}_{\Lambda}\overline{H}}{}^{3}_{\Lambda}\overline{H} \rightarrow \overline{d} + \overline{n} + \pi^{0}$$

³_AH search via two-body decays into charged particles:

- > Two body decay: lower combinatorial background
- Charged particles: ALICE acceptance for charged particles


($|\eta|$ <0.9) higher than for neutrals ($|\eta|$ <0.7)

Signal Extraction:

- > Identify ³He and π
- > Evaluate (³He, π) invariant mass
- > Apply topological cuts in order to:
 - identify secondary decay vertex and
 - reduce combinatorial background
- > Background estimation: π track rotated 20 times

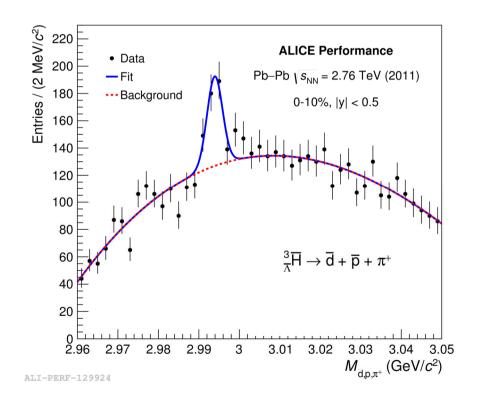
ALICE | EXA2017: International Conference on Exotic Atoms and Related Topics | 13-09-2017 | Stefano Piano

New preliminary results at $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$

Decay Channels

$${}^{3}_{\Lambda} H \rightarrow {}^{3} H e + \pi^{-} \qquad {}^{3}_{\overline{\Lambda}} \overline{H} \rightarrow {}^{3} \overline{H} e + \pi^{+}$$

$${}^{3}_{\Lambda} H \rightarrow {}^{3} H + \pi^{0} \qquad {}^{3}_{\overline{\Lambda}} \overline{H} \rightarrow {}^{3} \overline{H} + \pi^{0}$$

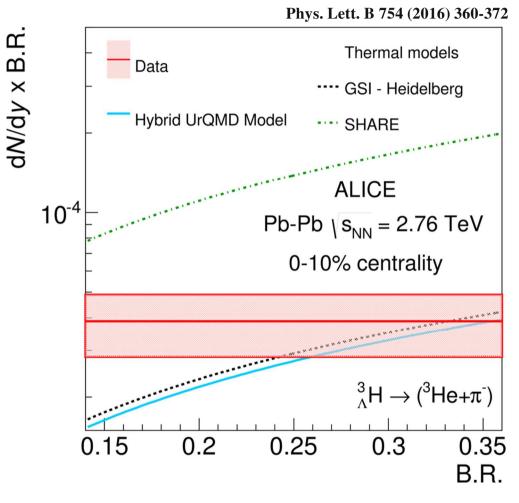

$${}^{3}_{\Lambda} H \rightarrow d + p + \pi^{-} \qquad {}^{3}_{\overline{\Lambda}} \overline{H} \rightarrow \overline{d} + \overline{p} + \pi^{+}$$

$${}^{3}_{\Lambda} H \rightarrow d + n + \pi^{0} \qquad {}^{3}_{\overline{\Lambda}} \overline{H} \rightarrow \overline{d} + \overline{n} + \pi^{0}$$

 ${}^{3}_{\Lambda}$ H search via three-body decays into charged particles:

- > Three body decay: higher combinatorial background but
- Higher B.R. ~ 41% (Kamada et al., PRC57(1998)4)
- Charged particles: ALICE acceptance for charged particles (|η|<0.9) higher than for neutrals (|η|<0.7)
 Signal Extraction:
- > Identify d, p and π and anti
- Evaluate (d,p,π) invariant mass
- > Apply topological cuts and background estimation

New preliminary results: three body decay at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

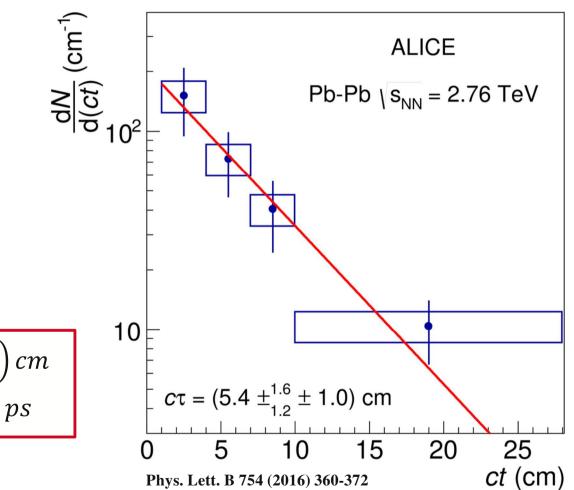


(ANTI-)HYPERTRITON YIELDS

COMPARISON WITH THEORETICAL PREDICTIONS

Three different theoretical predictions drawn as a function of BR(${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$) after being multiplied by BR:

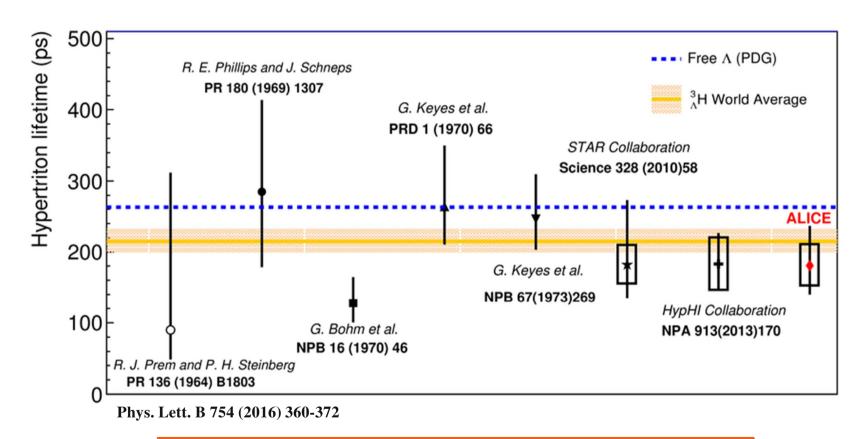
- Hybrid UrQMD: combines the hadronic transport approach with an initial hydrodynamical stage for the hot and dense medium (J. Steinheimer et al., Phys. Lett. B 714, 85 (2012))
- ✓ GSI-Heidelberg: equilibrium statistical model with T_{chem}=156 MeV (A. Andronic et al., Phys. Lett. B 697, 203 (2011))
- SHARE: non-equilibrium thermal model with
 T_{chem}=138.3 MeV (M. Petráň et al., Phys. Rev. C 88, 034907 (2013))
- Great sensitivity to theoretical models parameters
- Non–equilibrium statistical thermal model (Petran-Rafelsky SHARE) provides better global fitting ($\chi^2 \sim 1$) to lower mass hadrons but **misses** ${}^3_{\Lambda}$ **H** and light nuclei
- \succ Experimental data closest to equilibrium thermal model with T_{chem} = 156 MeV and to Hybrid UrQMD


HYPERTRITON LIFETIME DETERMINATION

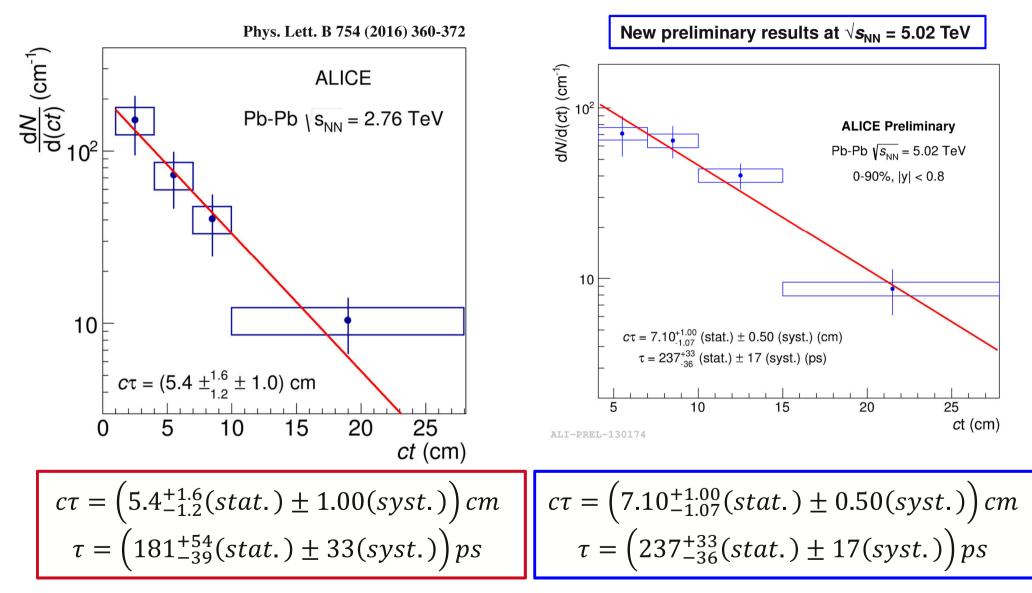
Direct decay time measurement is difficult (~ps), but the excellent determination of primary and decay vertex allows measurement of lifetime via:

$$N(t) = N(0) e^{-\frac{t}{\tau}}$$

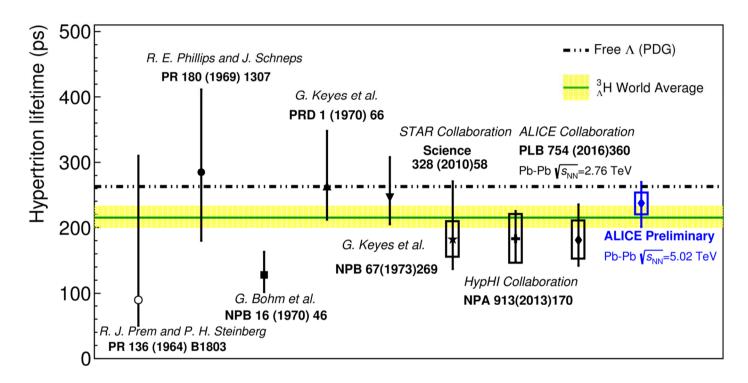
where $t = L/(\beta \gamma c)$ and $\beta \gamma c = p/m$ with *m* the hypertriton mass, *p* the total momentum and *L* the decay length


$$c\tau = \left(5.4^{+1.6}_{-1.2}(stat.) \pm 1.00(syst.)\right) cm$$

$$\tau = \left(181^{+54}_{-39}(stat.) \pm 33(syst.)\right) ps$$


HYPERTRITON LIFETIME WORLD AVERAGE

Re-evaluation of world average including ALICE result: $au = (215^{+18}_{-16}) \, ps$ ALICE value compatible with the computed average


HYPERTRITON LIFETIME DETERMINATION

HYPERTRITON LIFETIME WORLD AVERAGE

ALI-PREL-130195

- \succ Previous heavy-ion experiment results show a trend well below the free \land lifetime
- > ALICE result from Pb-Pb at 5.02 TeV is closer to the free Λ
- > More precision, reducing the statistical uncertainties can be reached:
 - Another Pb-Pb data sample will be collected in 2018 at the LHC:
 - ✓ the expected statistics for ${}^{3}_{\Lambda}$ H is >~2x
 - ✓ lifetime in the 3-body decay channel

HYPERTRITON LIFETIME UNCERTAINITIES

 $c\tau = \left(5.4^{+1.6}_{-1.2}(stat.) \pm 1.00(syst.)\right) cm$ $\tau = \left(181^{+54}_{-39}(stat.) \pm 33(syst.)\right) ps$

Stat:		+30% - 22%
Syst:		18%
	Signal Extraction	9%
	Tracking Efficiency	10%
	Absorption	12%

Phys. Lett. B 754 (2016) 360-372

At the end of RUN3: Statistical uncertainty will be negligible

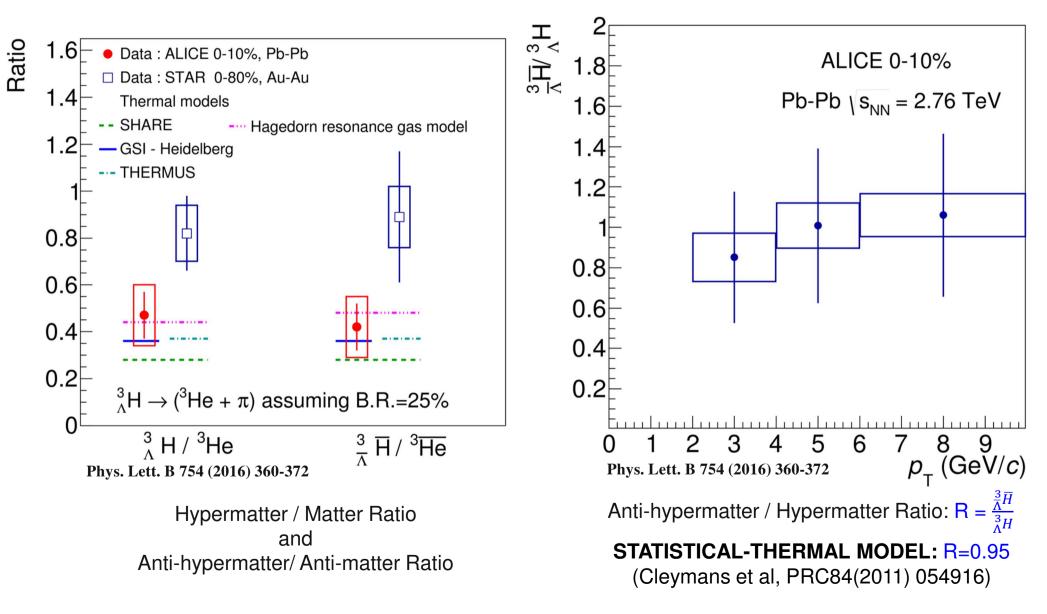
With the LS2 ALICE upgrades: Signal extraction and tracking efficiency uncertainties will be strongly reduced At the end of Pb-Pb during RUN2 (Nov. 2018) the expected statistics for ${}^{3}_{\Lambda}$ H is >2x

During the Long Shutdown 2 (2019-2020):

- New Inner Tracking System (ITS)
 - ✓ improved pointing precision
 - ✓ less material -> thinnest tracker at the LHC
- Upgrade of Time Projection Chamber (TPC):
 - new GEM technology for readout chambers
 - ✓ continuous readout
 - ✓ faster readout electronics
- High Level Trigger (HLT):
 - ✓ new architecture
 - ✓ on line tracking & data compression
 - ✓ 50kHz PbPb event rate

At the end of RUN3 (2023) (*) the expected Integrated Luminosity: ~10 nb⁻¹ the expected statistics for ${}^{3}_{\Lambda}$ H is ~200x

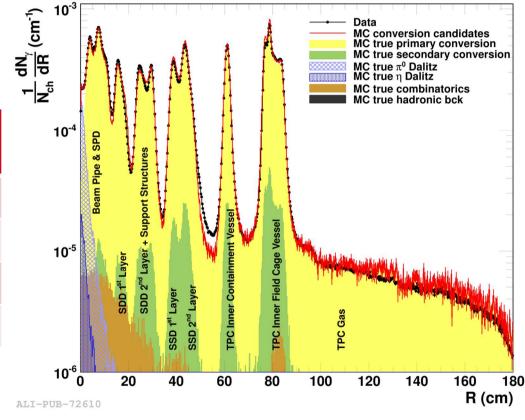
(*) Technical Design Report for the Upgrade of the ALICE Inner Tracking System B. Abelev *et al.* (The ALICE Collaboration) 2014 J. Phys. G: Nucl. Part. Phys. 41 087002



CONCLUSIONS

- ✓ Excellent ALICE performance allows for detection of light (anti-)nuclei and (anti-)hypernuclei
- ✓ Blast-Wave fits can be used to extrapolate the yields to the unmeasured p_T region of light hypernuclei in Pb-Pb.
- ✓ Hypertriton yield is in agreement with the current best thermal fit from equilibrium thermal model $(T_{chem} = 156 \pm 2 \text{ MeV})$
- The excellent determination of primary and decay vertices allows for the measurement of lifetime via exponential fit of the proper decay time distribution
- ✓ Re-evaluation of the hypertrion lifetime world average
- ✓ ALICE preliminary result from Pb-Pb at 5.02 TeV is closer to the free Λ
- ✓ Future LHC runs, RUN2 and RUN3, and ALICE upgrades will allow for precise study of (anti)hypertriton production yield and lifetime

(ANTI-)HYPERTRITON YIELDS RATIOS

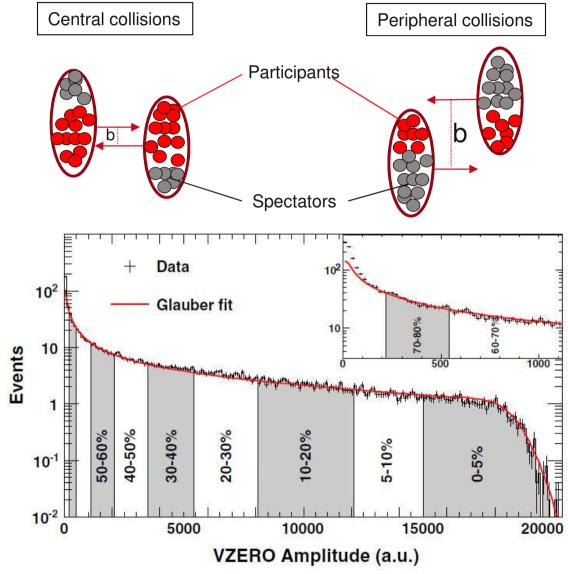

Data

HYPERTRITON LIFETIME UNCERTAINITIES

 10^{-3}

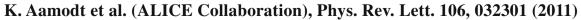
$c\tau = (5.4^{+1.6}_{-1.2}(stat.) \pm 1.00(syst.))cm$	
$\tau = (181^{+54}_{-39}(stat.) \pm 33(syst.)) ps$	

Stat:		+30% - 22%
Syst:		18%
	Signal Extraction	9%
	Tracking Efficiency	10%
	Absorption	12%



Phys. Lett. B 754 (2016) 360-372

(anti)hypertriton absorption is not negligible:


- (anti)hypertriton is barely bound: stronger absorption in matter than t or ³He
- distribution of the material well known from the distribution of reconstructed photon conversions
- more precise evaluation of absorption cross section of ${}^{3}_{\Lambda}$ H and 3 He is needed

COLLISION GEOMETRY

- Nuclei are extended objects
- Geometry not directly measurable
- Centrality (percentage of the total cross section of the nuclear collision) connected to observables via Glauber model
- Data classified into centrality percentiles for which the average impact parameter, number of participants, and number of binary collisions can be determined

