

Interaction of real and virtual $N\bar{N}$ pairs in J/ψ decays

Sergey Salnikov

Budker Institute of Nuclear Physics Novosibirsk, Russia

International Conference on Exotic Atoms and Related Topics - EXA2017

September 13, 2017

Outline

- Motivation.
- \bullet Interaction of $N\bar{N}$ pairs produced in e^+e^- annihilation.
- $p\bar{p}$ interaction in the decays $J/\psi \rightarrow p\bar{p}\pi^0$ and $J/\psi \rightarrow p\bar{p}\eta$.
- $p\bar{p}$ interaction in the decays $J/\psi \rightarrow p\bar{p}\omega$, $J/\psi \rightarrow p\bar{p}\rho$ and $J/\psi \rightarrow p\bar{p}\gamma$.
- Interaction of virtual $N\bar{N}$ pairs in the decay $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$.

Motivation

- \bullet There are several optical potential models describing $N\bar{N}$ interaction at low energies.
- The parameters of the models were obtained by fitting the experimental data for scattering of unpolarized particles.
- The predictions for some spin-dependent observables are essentially different.

Motivation

- There are several optical potential models describing $N\bar{N}$ interaction at low energies.
- The parameters of the models were obtained by fitting the experimental data for scattering of unpolarized particles.
- The predictions for some spin-dependent observables are essentially different.

$N\bar{N}$ production near the threshold

• Valid also below the $N\bar{N}$ threshold

Simple potential model of $N\bar{N}$ interaction

- Only partial waves ${}^{3}S_{1}$ and ${}^{3}D_{1}$ are considered.
- Long-range pion-exchange potential and short-range potential well.
- Experimental data for $N\bar{N}$ scattering (elastic, charge-exchange $p\bar{p} \leftrightarrow n\bar{n}$ and annihilation), $p\bar{p}$ and $n\bar{n}$ production in e^+e^- annihilation, ratio of electromagnetic form factors of the proton $|G^p_E/G^p_M|$ are taken into account.

Simple potential model of $N\bar{N}$ interaction

- Only partial waves ${}^{3}S_{1}$ and ${}^{3}D_{1}$ are considered.
- Long-range pion-exchange potential and short-range potential well.
- Experimental data for $N\bar{N}$ scattering (elastic, charge-exchange $p\bar{p} \leftrightarrow n\bar{n}$ and annihilation), $p\bar{p}$ and $n\bar{n}$ production in e^+e^- annihilation, ratio of electromagnetic form factors of the proton $|G^p_E/G^p_M|$ are taken into account.

Decays $J/\psi \to p\bar{p}\pi^0(\eta)$

 $^3S_1-{}^3D_1$ states dominate near the threshold of $p\bar{p}$ production, as in the case of $e^+e^-\to N\bar{N}$

$$T_{\lambda\lambda'}^{I} = \frac{\mathcal{G}_{I}}{m_{J/\psi}} \left[\boldsymbol{k} \times \boldsymbol{\epsilon}_{\lambda'} \right] \left(\mathbf{e}_{\lambda} u_{1}^{I}(0) + \frac{u_{2}^{I}(0)}{\sqrt{2}} \left[\mathbf{e}_{\lambda} - 3\hat{\boldsymbol{p}}(\mathbf{e}_{\lambda} \cdot \hat{\boldsymbol{p}}) \right] \right)$$

 $p\bar{p}$ invariant mass spectrum: $\frac{d}{dI}$

$$\frac{\Gamma}{M} = \frac{\mathcal{G}_{I}^{2} p k^{3}}{2^{5} \, 3\pi^{3} m_{J/\psi}^{4}} \left(\left| u_{1}^{I}(0) \right|^{2} + \left| u_{2}^{I}(0) \right|^{2} \right)$$

Angular distributions

$$\frac{d\Gamma}{dMd\Omega_p} = \frac{1}{4\pi} \frac{d\Gamma}{dM} \left[1 + \gamma^I P_2(\cos\vartheta_p) \right], \qquad \frac{d\Gamma}{dMd\Omega_{pk}} = \frac{1}{4\pi} \frac{d\Gamma}{dM} \left[1 - 2\gamma^I P_2(\cos\vartheta_{pk}) \right]$$

Anisotropy parameter:
$$\gamma^{I} = \frac{1}{4} \frac{\left|u_{2}^{I}(0)\right|^{2} - 2\sqrt{2}\operatorname{Re}\left[u_{1}^{I}(0)u_{2}^{I*}(0)\right]}{\left|u_{1}^{I}(0)\right|^{2} + \left|u_{2}^{I}(0)\right|^{2}}$$

Spectra of decays $J/\psi \rightarrow p\bar{p}\pi^0(\eta)$

 $p\bar{p}$ invariant mass spectra in J/ψ decays

Anisotropy parameters in J/ψ decays

Sergey Salnikov (BINP)

Interaction of real and virtual NN pairs in J/ψ decays

Spectra of decays $J/\psi \rightarrow p\bar{p}\pi^0(\eta)$

 $p\bar{p}$ invariant mass spectra in J/ψ decays

in J/ψ decays near the threshold of $p\bar{p}$ production

Decays $J/\psi \to p \bar{p} \omega(\rho, \gamma)$

 $^{1}S_{0}$ state dominates near the threshold of $p\bar{p}$ production $T_{\lambda\lambda'}^{I} = \frac{\mathcal{G}_{I}}{m_{J/\psi}} \mathbf{e}_{\lambda} \left[\mathbf{k} \times \boldsymbol{\epsilon}_{\lambda'} \right] \psi_{R}^{I}(0)$ $\frac{d\Gamma}{dM} = \frac{\mathcal{G}_{I}^{2} p k^{3}}{2^{4} 3 \pi^{3} m_{J/\psi}^{4}} \left| \psi_{R}^{I}(0) \right|^{2}$

Simple potential model

- Only partial wave ¹S₀ is considered.
- The potential is a sum of potentials of isoscalar and isovector exchange

$$V(r) = V_0(r) + V_1(r) (\tau_1 \cdot \tau_2)$$

$$V_0(r) = (U_0 - i W_0) \theta (a_0 - r)$$

$$V_1(r) = (U_1 - i W_1) \theta (a_1 - r) + 3f_{\pi}^2 \frac{e^{-m_{\pi}r}}{3r} \theta (r - a_1)$$

• Experimental data for $N\bar{N}$ scattering (elastic, charge-exchange $p\bar{p} \leftrightarrow n\bar{n}$ and annihilation) and spectra of the J/ψ decays taken into account.

Spectra of decays $J/\psi \rightarrow p\bar{p}\omega(\rho,\gamma)$

Decay $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

M. Ablikim, et al., Phys. Rev. Lett. 117 (2016) 42002

Decay $J/\psi \to \gamma \eta' \pi^+ \pi^-$

$$\frac{d\Gamma_{\text{tot}}}{dM} = -\frac{\mathcal{G}_{I}^{2}k^{3}}{2^{4} 3\pi^{3}m_{p}m_{J/\psi}^{4}} \operatorname{Im} \mathcal{D}^{I}(0,0|E) = \frac{d\Gamma_{\text{el}}}{dM} + \frac{d\Gamma_{\text{inel}}}{dM} + \frac{d\Gamma_{\text{inel}$$

The spectrum is approximated by the curve $\underbrace{A \cdot \frac{d\Gamma_{\text{inel}}^0}{dM}}_{N\bar{N} \text{ contribution}} + \underbrace{B \cdot M + C}_{\text{other contributions}}$

$$A$$
 — probability of $Nar{N} o \eta' \pi^+ \pi^-$

Conclusion

- The idea: try to use all available experimental data to fit the parameters of the models.
- The $p\bar{p}$ invariant mass spectra in the decays $J/\psi \rightarrow p\bar{p}\pi^0$ and $J/\psi \rightarrow p\bar{p}\eta$ are described with the help of a simple potential model.
- The predictions for the angular distributions in these decays are obtained. The experimental measurement would be helpful.
- The $p\bar{p}$ invariant mass spectra in the decays $J/\psi \rightarrow p\bar{p}\omega$, $J/\psi \rightarrow p\bar{p}\gamma$ and $\psi(2S) \rightarrow p\bar{p}\gamma$ are described.
- The peak in the spectrum of the decay $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ is described by $N\bar{N}$ interaction in the intermediate state.

Publications

- V.F. Dmitriev, A.I. Milstein, and S.G. Salnikov, Phys. Rev. D 93 (2016) 034033.
- V.F. Dmitriev, A.I. Milstein, and S.G. Salnikov, Phys. Lett. B. 760 (2016) 139.
- A. I. Milstein, and S. G. Salnikov, Nucl. Phys. A. 966 (2017) 54.

Thank you for attention

S = 1

S = 0

