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• Quarkonium is a nonrelativistic (NR) 
multiscale systems—> golden probe 

of strong interactions

• State of the art theory tools: Effective 
Field Theories (EFTs) and lattice 

• Same techniques can be used  for 
studies of electromagnetic (NR) 

bound states: atoms and molecules 

•Exotic quarkonium: EFT of  Born-
Oppenheimer and Van der Waals



 Quarkonium (=bound state of a heavy  
quark and a heavy antiquark) has been  

instrumental for the establishing of 
QCD, the theory of strong interaction,  

and the Standard Model of ParticlePhysics 
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village where people live 70000 
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Aubert et al. BNL 74

Γ ∼ 90 KeV

The  November revolution in 1974: 

J/� discoverythe

↵s

it  has been the confirmation of the 
charm quark prediction and  

of QCD (strong int theory) foundations

narrow width and asymptotic freedom 
annihilation at large scale controlled by small

first discovery of a quark of large mass moving “slowly”
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Confinement and asymptotic freedom--> main  
properties of QCD

 

Variety of potential models used  



 Quarkonium  is  
a  golden system to study strong interactions 
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Heavy quarks offer a privileged access to the strong 

sector of the Standard Model

Q

v

q

heavy light meson: HQET
only two scales exist                andm ΛQCD

A large scale αs(mQ) ≪ 1mQ ≫ ΛQCD

Q̄

Q

v

r

Quarkonium: nonrelativistic 

multiscale system 

m mv ∼ r
−1

mv
2

ΛQCD

v ≪ 1 → m ≫ mv ≫ mv
2

many scales: a challenge and an opportunity
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Quarkonium as a confinement and deconfinement probe

It is precisely the rich structure of separated energy scales that makes quarkonium an
ideal probe of confinement and deconfinement.

• The different quarkonium radii provide different measures of the transition from a
Coulombic to a confined bound state.

V  (r)
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2
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1 2 r(fm)
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" # #
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 2$ #c

ΛQCD

Low lying QQ̄ High lying QQ̄

◦ Godfrey Isgur PRD 32(85)189

• Different quarkonia will dissociate in a medium at different temperatures, providing
a thermometer for the plasma.

◦ Matsui Satz PLB 178(86)416

At zero temperature 

quarkonia probe the perturbative 
(high energy)  and non 

perturbative region (low energy)  
as well as the transition region in 

dependence of their radius r

Color Screening

cc

Debye charge screening 

V (r) ⇥ ��s
e�mDr

r

At finite T 

r � 1
mD

Bound state 
dissolves

quarkonia dissociate at different 
temperature in dependence of 

their radius: they  
are a Quark Gluon Plasma 

thermometer



Quarkonium as an exploration tool of physics of 
 Standard Model and beyond

40

Quarkonium decay into new particles?

Mode Mass range ( GeV) BF upper limit (90% CL)
Υ(2S , 3S )→ γA0, A0 → µ+µ− 0.21 < mA < 9.3 (0.3 − 8.3) × 10−6

Υ(3S )→ γA0, A0 → τ+τ− 4.0 < mA < 10.1 (1.5 − 16) × 10−5

Υ(2S , 3S )→ γA0, A0 → hadrons 0.3 < mA < 7.0 (0.1 − 8) × 10−5

Υ(1S )→ γA0, A0 → χχ̄ mχ < 4.5 GeV (0.5 − 24) × 10−5

Υ(1S )→ γA0, A0 → invisible mA < 9.2 GeV (1.9 − 37) × 10−6

Υ(3S )→ γA0, A0 → invisible mA < 9.2 GeV (0.7 − 31) × 10−6

Υ(1S )→ γA0, A0 → gg mA < 9.0 GeV 10−6 − 10−2

Υ(1S )→ γA0, A0 → ss mA < 9.0 GeV 10−5 − 10−3

Table 3. Results of light Higgs boson searches performed by the BABAR Collaboration.

from e+e− → γγ, radiative Bhabha, and two-photon fusion events. The A0 yield is extracted by a
series of unbinned likelihood fits to the photon energy distribution for 0 < mA0 < 7.8 GeV. No excess
is seen, and limits on the branching fraction at the level of (0.7 − 31) × 10−6 are derived with 90%
confidence level [13].

3.5 Search for Υ(1S )→ γA0, A0 → gg or ss

.
A recent search was performed by BABAR for Υ(2S ) → π+π− − Υ(1S )),Υ(1S ) → γA0, A0 →

gg(orss). Selected events with final states consisting of three or more light adrons, in addition to the
two pions from the Υ(2S ) decay, and the radiative photon. A total of 26 final states composed of
light hadrons were studied, including some containing at least a kaon pair, which were assigned to
the A0 → ss decay. The main background is due to Υ(1S ) decay to ggg, where one of the π0 of the
hadronization decays to photons, one of which is mistaken for the radiative one. The A0 mass range
explored is 0.5 to 9 GeV. We observe no signals [14]in the hadronic invariant mass spectra, and set
upper limits at 90% CL limits on the product branching for Υ(1S )→ γA0, A0 → gg from 10−6 to 10−2

; for the branghing ratio Υ(1S ) → γA0, A0 → ss the corresponding limits are from 10−5 to 10−3 We
do not observe a NMSSM A0 or any narrow hadronic resonance.

4 Search for light dark matter

We have now overwhelming astrophysical evidence for dark matter with several possibly related
anomalies observed. There is more than one explanation, of course, and most models introduce a
new dark force mediated by a new gauge boson with a mass around a GeV. Dark matter particles are
expected at the TeV scale, but the lightest particles in which they would annihilate could be pairs of
light dark bosons, which subsequently could only decay into lepton pairs, or scatter. This light hidden
sector is poorly constrained, and it is worth exploring the possibility that these particles are produced
at accelerators. B-factories offer a low background environment , so signatures of dark particles at the
MeV/GeV scale, should not escape detection, and a discovery would allow to probe their structure.
The 2 sectors could interact via kinematical mixing, and the value of the mixing parameter would be
the key to a possible detection. The dark photon, the equivalent of the e.m. photon, could have a mass
of the order from MeV to GeV, and would couple to the SM fermions with a charge ϵ. The preferred
value for ϵ is from 10−5 to 10−3 and several experiments have already put limits. The hidden boson
masses are usually generated via the Higgs mechanism, adding hidden Higgs bosons (h′) to the theory.
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Figure 6. Constraints on the mixing parameters, ϵ, as a function of the hidden photon mass derived from searches
in Υ(2S , 3S ) decays at BABAR (orange shading) and from other experiments [18–20] (gray shading). The red
line shows the value of the coupling required to explain the discrepancy between the calculated and measured
anomalous magnetic moment of the muon [? ].

10−10 − 10−8 are excluded for a large range of hidden photon and hidden Higgs masses, assuming
prompt decays. Assuming αD = α ≃ 1/137, limits on the mixing strength in the range 10−4 − 10−3

are derived, an order of magnitude smaller than the current experimental bounds extracted from direct
photon production in this mass range.

5 Summary

More than 5 years after completion of the data taking, the BABAR collaboration is still very active.
The great amount of data collected is stimulating new ideas. The T violation measurement is a first
and constitues a beautiful proof of the CPT theorem. Searches for exotic particles have not given
positive results, but have contributed to considerably narrow the parameters space. One of the hot
topics in Particles Physics is now dark matter: recent evidence has suggested that dark matter might
contain a MeV- GeV scale component. Thanks to their large luminosities, B factories provide an ideal
environment to probe for such a possibility, complementing direct detection and satellite experiments.
No sign of light dark matter has been observed so far, but several new analyses are going on and we
still hope for surprises. A big step forward is expected with the atart of the Super flavor factory at
KEK: BELLE-II is expected to increase the sensitivity of these searches by a factor 10 − 100.
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• The large m makes Quarkonium an ideal probe  of  new light particles

invisible 
decays of 
Y(1S) at Belle

• Quarkonium can serve for the precise extraction of Standard 
Model parameters: heavy quark masses and strong coupling 

constant ↵s

• Quarkonium in its exotic manifestations probes the 
nonstandard characteristics of a nonabelian gauge 

theory: hybrids, multi quark configurations
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a  golden system to study strong 

interactions

many experimental data and opportunities

new theoretical tools:  
Effective Field Theories  (EFTs) of QCD 

and progress in lattice QCD
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it makes apparent the zero order problem which is a Schoedinger eq. 

—the potentials  come directly from QFT—> everything finite in perturbation 
theory 

—the non-potentials   corrections come directly from QFT

—Poincare’ invariance is intact at QM level—> exact relations among potentials
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In QCD another scale is relevant ΛQCD

Quarkonium with NR EFT: pNRQCD
strongly 
coupled 
pNRQCD

weakly 
coupled 
pNRQCD
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Quarkonium with EFTEFTs for Quarkonium
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Beneke Smirnov 98, Labelle 98
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Kniehl, Penin 99, Griesshammer 00,

 Manohar Stewart 00, Luke et al 00,
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Pineda, Soto 97, N.B., Pineda, Soto, Vairo 99 

N.B. Vairo,   Pineda, Soto  00--017 
N.B., Pineda, Soto, Vairo Review of Modern Physis 77(2005) 
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Physics at the scale mv and mv^2 : 
pNRQCD   

bound state formation 

pNRQCD is today the theory used to address quarkonium bound 
states properties
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*Calculating/extracting  nonperturbatively the low energy  
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*Extending the theory (electromagnetic effect, 3 bodies)

The EFT  has not yet been  constructed 

*Degrees of freedom still to be identified

The EFT  is being   constructed 

*Results in the static limit that hints at a new physical picture

(Exotics close to threshold) 

(Finite T ) 

Quarkonia states below and away from the strong decay threshold
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pNRQCD at finite T has been constructed
Laine et al, 2007, Escobedo, Soto 
2007 N. B. , Petreczky, Vairol. 2008

N. B. Escobedo, Ghiglieri,  Vairo Soto, 
 2010-2014

The eft allows us to discover new, unexpected and important facts: 

• The potential is neither the color singlet  free energy nor the  internal 
• The quarkonium dissociation is a consequence of the apparence of a thermal 
decay width rather than being  due to the color screening of the real part of the 

We have now a coherent and systematical setup to calculate masses and 
width of quarkonium at finite T for small coupling: results to calculate 

study of non equilibrium evolution of quarkonium in a fireball 
using EFT for open quantum systems_> R-AA calculation

N. B.,  Escobedo, Soto Vairo 2017 

Quarkonia states below in the quark gluon plasma at temperature T
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 —>hybrids multiplets 
Berwein,  N.B., 

Tarrus, Vairo 015 

Quarkonia states at or above the strong decay threshold: X, Y, Z

pNRQCD for quark-antiquark and excited glue

working now at including spin and extending to tetra quarks

 EFT of Born Oppenheimer  

Berwein,  N.B., Lai, Segovia, Tarrus, Vairo 017 
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pNRQCD formv ≫ ΛQCD

Degrees of freedom that scale like mv are integrated out:

!  "  V(µr)

NRQCD pNRQCD

• Degrees of freedom: quarks and gluons

Q-Q̄ states, with energy ∼ ΛQCD, mv2

momentum <∼ mv

⇒ i) singlet S ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2



pNRQCD for quarkonia with small radius      r ⌧ ⇤�1
QCD

(Weakly coupled) pNRQCD Lagrangian for QQ̄

• If mv ≫ ΛQCD, the matching is perturbative

• Degrees of freedom: quarks and gluons

Q-Q̄ states, with energy ∼ ΛQCD, mv2 and momentum <
∼ mv

⇒ (i) singlet S (ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2

• Definite power counting: r ∼
1

mv
and t, R ∼

1

mv2
, 1

ΛQCD

The gauge fields are multipole expanded:
A(R, r, t) = A(R, t) + r · ∇A(R, t) + . . .

Non-analytic behaviour in r → matching coefficients V
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QCD  singlet static potential  and singlet  static energy 
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contributes from 3 loops 

The potential is a Wilson coefficient of the EFT.  
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Quarkonium singlet static potential at N^4LO
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Two problems:
1)Bad convergence of the series due to large beta_0 terms

2) Large logs
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Two problems:
1)Bad convergence of the series due to large beta_0 terms

2) Large logs

The eft  cures both:
1) Renormalon subtracted scheme 

2) Renormalization group summation of the logs

up to N^3LL (↵4+n
s lnn ↵s).               N. B Garcia, Soto Vairo 2007, 2009, Pineda, Soto

Beneke 98, Hoang, Lee 99, Pineda 01, N.B. Pineda 
Soto, Vairo 09

for long it was believed  that such series was not convergent

problem for any phenomenological application
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entirely determined by the quark anomalous mag-
netic moment. Since the quark magnetic moment
appears at the scale m, it is accessible by pertur-
bation theory: κQ = 2αs(m)/(3π) + O(αs

2). As a
consequence, κQ is a small positive quantity, about
0.05 in the bottomonium case and about 0.08 in the
charmonium one. This is confirmed by lattice cal-
culations [423] and by the analysis of higher-order
multipole amplitudes (see Sect. 3.1.6).

• QCD does not allow for a scalar-type contribution
to the magnetic transition rate. A scalar interac-
tion is often postulated in phenomenological mod-
els.

The above conclusions were shown to be valid at any
order of perturbation theory as well as nonperturbatively.
They apply to magnetic transitions from any quarkonium
state. For ground state magnetic transitions, we expect
that perturbation theory may be used at the scale mv.
Under this assumption, the following results were found
at relative order v2.

• The magnetic transition rate between the vector
and pseudoscalar quarkonium ground state, includ-
ing the leading relativistic correction (parametrized
by αs at the typical momentum-transfer scale
miαs/2) and the leading anomalous magnetic mo-
ment (parametrized by αs at the mass scale mi/2),
reads

Γ(i → γ + f) =
16

3
α e2

Q

E3
γ

m2
i

×
[

1 +
4

3

αs(mi/2)

π
−

32

27
αs

2(miαs/2)

]
, (97)

in which i = 1301 and f = 1101. This expression
is not affected by nonperturbative contributions.
Applied to the charmonium and bottomonium case
it gives: B(J/ψ → γηc(1S)) = (1.6 ± 1.1)%
(see Sect. 3.1.2 for the experimental situation) and
B(Υ(1S) → γηb(1S)) = (2.85 ± 0.30) × 10−4 (see
Sect. 3.1.8 for some experimental perspectives).

• A similar perturbative analysis, performed for hin-
dered magnetic transitions, mischaracterizes the
experimental data by an order of magnitude, point-
ing either to a breakdown of the perturbative ap-
proach for quarkonium states with principal quan-
tum number n > 1, or to large higher-order rela-
tivistic corrections.

The above approach is well suited to studying the line-
shapes of the ηc(1S) and ηb(1S) in the photon spectra of
J/ψ → γηc(1S) and Υ(1S) → γηb(1S), respectively. In
the region of Eγ ≪ mαs, at leading order, the lineshape

is given by [424]

dΓ

dEγ
(i → γ + f) =

16

3

α e2
Q

π

E3
γ

m2
i

×

Γf/2

(mi − mf − Eγ)2 + Γ2
f/4

, (98)

which has the characteristic asymmetric behavior around
the peak seen in the data (compare with the discussion
in Sect. 3.1.2).

No systematic analysis is yet available for relativis-
tic corrections to electromagnetic transitions involving
higher quarkonium states, i.e., states for which ΛQCD

is larger than the typical binding energy of the quarko-
nium. These states are not described in terms of a
Coulombic potential. Transitions of this kind include
magnetic transitions between states with n > 1 and all
electric transitions, n = 2 bottomonium states being on
the boundary. Theoretical determinations rely on phe-
nomenological models, which we know do not agree with
QCD in the perturbative regime and miss some of the
terms at relative order v2 [407]. A systematic analysis
is, in principle, possible in the same EFT framework de-
veloped for magnetic transitions. Relativistic corrections
would turn out to be factorized in some high-energy coef-
ficients, which may be calculated in perturbation theory,
and in Wilson-loop amplitudes similar to those that en-
code the relativistic corrections of the heavy quarkonium
potential [174]. At large spatial distances, Wilson-loop
amplitudes cannot be calculated in perturbation theory
but are well-suited for lattice measurements. Realizing
the program of systematically factorizing relativistic cor-
rections in Wilson-loop amplitudes and evaluating them
on the lattice, would, for the first time, produce model-
independent determinations of quarkonium electromag-
netic transitions between states with n > 1. These are
the vast majority of transitions observed in nature.

Higher-order multipole transitions have been observed
in experiments (see Sect. 3.1.6), Again, a systematic
treatment is possible in the EFT framework outlined
above, but has not yet been realized.

3.1.2. Study of ψ(1S, 2S) → γηc(1S)

Radiative transitions in the charmonium system have
recently been explored using both lattice QCD [423] and
effective field theory techniques [407]. Key among these
are the magnetic dipole (M1) transitions J/ψ → γηc(1S)
and ψ(2S) → γηc(1S). Using a combination of inclusive
and exclusive techniques, CLEO [69] has recently mea-
sured

B(J/ψ → γηc(1S)) = (1.98 ± 0.09 ± 0.30)%

B(ψ(2S) → γηc(1S)) = (0.432± 0.016 ± 0.060)% , (99)

reducing the discrepancy between experiment and pre-
dictions from the nonrelativistic quark model [31]. The
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TABLE 23: Comparison of measured χcJ decay-width ra-
tios (using PDG08 [18] and its online update for 2009) with
LO and NLO determinations, assuming mc = 1.5 GeV and
αs(2mc) = 0.245, but without corrections of relative order v2.
LH ≡ light hadrons

Ratio PDG LO NLO

Γ(χc0 → γγ)
Γ(χc2 → γγ)

4.9 3.75 5.43

Γ(χc2 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

440 347 383

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

4000 1300 2781

Γ(χc0 → LH) − Γ(χc2 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

8.0 2.75 6.63

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

9.0 3.75 7.63

matrix elements is to go to the lower-energy EFT, pN-
RQCD, and to exploit the hierarchy mv ≫ mv2. In
pNRQCD, NRQCD matrix elements factorize into two
parts: one, the quarkonium wave-function or its deriva-
tive at the origin, and the second, gluon-field correlators
that are universal, i.e., independent of the quarkonium
state. The pNRQCD factorization has been exploited for
P-wave and S-wave decays in [176].

Quarkonium ground states have typical binding en-
ergy larger than or of the same order as ΛQCD. Matrix
elements of these states may be evaluated in perturba-
tion theory with the nonperturbative contributions being
small corrections encoded in local or nonlocal conden-
sates. Many higher-order corrections to spectra, masses,
and wave functions have been calculated in this man-
ner [152], all of them relevant to the quarkonium ground
state annihilation into light hadrons and its electromag-
netic decays. For some recent reviews about applica-
tions, see [445, 446]. In particular, Υ(1S), ηb(1S), J/ψ,
and ηc(1S) electromagnetic decay widths at NNLL have
been evaluated [248, 447]. The ratios of electromagnetic
decay widths were calculated for the ground state of char-
monium and bottomonium at NNLL order [447], finding,
e.g.,

Γ(ηb(1S) → γγ)

Γ(Υ(1S) → e+e−)
= 0.502± 0.068 ± 0.014 . (107)

A partial NNLL-order analysis of the absolute widths of
Υ(1S) → e+e− and ηb(1S) → γγ can be found in [248].

As the analysis of Γ(Υ(1S) → e+e−) of [248] illus-
trates, for this fundamental quantity there may be prob-
lems of convergence of the perturbative series. Prob-
lems of convergence are common and severe for all the
annihilation observables of ground state quarkonia and

may be traced back to large logarithmic contributions, to
be resummed by solving suitable renormalization group
equations, and to large β0αs contributions of either re-
summable or nonresummable nature (these last ones are
known as renormalons). Some large β0αs contributions
were successfully treated [448] to provide a more reliable
estimate for

Γ(ηc(1S) → LH)

Γ(ηc(1S) → γγ)
= (3.26 ± 0.6) × 103 , (108)

or (3.01 ± 0.5)× 103 in a different resummation scheme.
A similar analysis could be performed for the ηb(1S),
which combined with a determination of Γ(ηb(1S) → γγ)
would then provide a theoretical determination of the
ηb(1S) width. At the moment, without any resummation
or renormalon subtraction performed,

Γ(ηb(1S) → LH)

Γ(ηb(1S) → γγ)
≃ (1.8–2.3) × 104 . (109)

Recently a new resummation scheme has been suggested
for electromagnetic decay ratios of heavy quarkonium
and applied to determine the ηb(1S) decay width into
two photons [449]:

Γ(ηb(1S) → γγ) = 0.54 ± 0.15 keV . (110)

Substituting Eq. (110) into Eq. (109) gives Γ(ηb(1S) →
LH) = 7-16 MeV.

3.2.2. Measurement of ψ, Υ → γgg

In measurements of the γgg rate from J/ψ [223],
ψ(2S) [224], and Υ(1S, 2S, 3S) [218], CLEO finds that
the most effective experimental strategy to search for
γgg events is to focus solely upon those with energetic
photons (which are less prone to many backgrounds),
then to make the inevitable large subtractions of ggg,
qq̄, and transition backgrounds on a statistical basis,
and finally to extrapolate the radiative photon energy
spectrum to zero with the guidance of both theory and
the measured high energy spectrum. The most trouble-
some background remaining is from events with energetic
π0 → γγ decays which result in a high-energy photon in
the final state. One of several methods used to estimate
this background uses the measured charged pion spectra
and the assumption of isospin invariance to simulate the
resulting photon spectrum with Monte Carlo techniques;
another measures the exponential shape of the photon-
from-π0 distribution at low photon energy, where γgg de-
cays are few, and extrapolates to the full energy range.
Backgrounds to γgg from transitions require the input of
the relevant branching fractions and their uncertainties.
The rate for ggg decays is then estimated as that fraction
of decays that remains after all dileptonic, transition, and
qq̄ branching fractions are subtracted, again requiring in-
put of many external measurements and their respective
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Υ(1S) → e+e− and ηb(1S) → γγ can be found in [248].

As the analysis of Γ(Υ(1S) → e+e−) of [248] illus-
trates, for this fundamental quantity there may be prob-
lems of convergence of the perturbative series. Prob-
lems of convergence are common and severe for all the
annihilation observables of ground state quarkonia and

may be traced back to large logarithmic contributions, to
be resummed by solving suitable renormalization group
equations, and to large β0αs contributions of either re-
summable or nonresummable nature (these last ones are
known as renormalons). Some large β0αs contributions
were successfully treated [448] to provide a more reliable
estimate for

Γ(ηc(1S) → LH)

Γ(ηc(1S) → γγ)
= (3.26 ± 0.6) × 103 , (108)

or (3.01 ± 0.5)× 103 in a different resummation scheme.
A similar analysis could be performed for the ηb(1S),
which combined with a determination of Γ(ηb(1S) → γγ)
would then provide a theoretical determination of the
ηb(1S) width. At the moment, without any resummation
or renormalon subtraction performed,

Γ(ηb(1S) → LH)

Γ(ηb(1S) → γγ)
≃ (1.8–2.3) × 104 . (109)

Recently a new resummation scheme has been suggested
for electromagnetic decay ratios of heavy quarkonium
and applied to determine the ηb(1S) decay width into
two photons [449]:

Γ(ηb(1S) → γγ) = 0.54 ± 0.15 keV . (110)

Substituting Eq. (110) into Eq. (109) gives Γ(ηb(1S) →
LH) = 7-16 MeV.

3.2.2. Measurement of ψ, Υ → γgg

In measurements of the γgg rate from J/ψ [223],
ψ(2S) [224], and Υ(1S, 2S, 3S) [218], CLEO finds that
the most effective experimental strategy to search for
γgg events is to focus solely upon those with energetic
photons (which are less prone to many backgrounds),
then to make the inevitable large subtractions of ggg,
qq̄, and transition backgrounds on a statistical basis,
and finally to extrapolate the radiative photon energy
spectrum to zero with the guidance of both theory and
the measured high energy spectrum. The most trouble-
some background remaining is from events with energetic
π0 → γγ decays which result in a high-energy photon in
the final state. One of several methods used to estimate
this background uses the measured charged pion spectra
and the assumption of isospin invariance to simulate the
resulting photon spectrum with Monte Carlo techniques;
another measures the exponential shape of the photon-
from-π0 distribution at low photon energy, where γgg de-
cays are few, and extrapolates to the full energy range.
Backgrounds to γgg from transitions require the input of
the relevant branching fractions and their uncertainties.
The rate for ggg decays is then estimated as that fraction
of decays that remains after all dileptonic, transition, and
qq̄ branching fractions are subtracted, again requiring in-
put of many external measurements and their respective
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Low-lying quarkonia

• c and b masses at NNLO, N3LO∗, NNLL∗;
• Bc mass at NNLO;
• B∗

c , ηc, ηb masses at NLL;
• Quarkonium 1P fine splittings at NLO;
• Υ(1S), ηb electromagnetic decays at NNLL;
• Υ(1S) and J/ψ radiative decays at NLO;
• Υ(1S) → γηb, J/ψ → γηc at NNLO;
• tt̄ cross section at NNLL;
• QQq and QQQ baryons: potentials at NNLO, masses, hyperfine splitting, ... ;
• Thermal effects on quarkonium in medium: potential, masses (at mα5

s ), widths, ...;
• ...
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High-lying quarkonia away from threshold: 1/m potentials

• Singlet states described by the long tails of the potentials in pNRQCD:

V = V0 +
1

m
V1 +

1

m2
(VSD + VV D)

•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 

Quarkonium singlet static potential 
and from this we obtain the  



The non-perturbative Potentials
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High-lying quarkonia away from threshold: 1/m potentials

• Singlet states described by the long tails of the potentials in pNRQCD:

V = V0 +
1

m
V1 +

1

m2
(VSD + VV D)

•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 

Quarkonium singlet static potential 

Potentials are given in a factorized form as product of  
NRQCD matching coefficients and low energy terms. These are  

gauge  invariant wilson loop with electric and magnetic insertions



 QCD Spin dependent potentials  

 -factorization: the NRQCD matching coefficients encode the 
physics at the large scale m, the potentials are given in terms of 
low energy nonperturbative Wilson loops 

power counting; QM divergences absorbed   NRQCD matching 
coefficients

Pineda, Vairo 00



 Spin dependent potentials  

Such data can distinguish different models for the dynamics 
of low energy QCD e.g. effective string model 

N. B., Martinez, vairo 2014 
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For states close or above  the strong decay threshold the situation is 
much more complicated.

Near theshold heavy-light mesons and gluons excitations    
have to be included   and many additional states built using 

the light quark quantum numbers  may appear

there is no mass gap between  quarkonium and the creation 
 of a heavy-light  mesons couple 

mQq̄ +mQ̄q = 2m+ 2⇤QCD

 Many phenomenological models exist



Heavy-quark heavy antiquark plus glue 



Heavy-quark heavy antiquark plus glue 

Define the symmetries of the system and the system static 
energies in NRQCD

Lattice energies

◦ Juge Kuti Morningstar PRL 90 (2003) 161601

Symmetries

◦ Brambilla Pineda Soto Vairo NPB 566 (2000) 275

⇤

Juge Kuti Morningstar 2003
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Match to pNRQCD: one can determine the form of the potential

EH(r) = VO(r) + ⇤H + bHr2

Octet potential at two loops;  renormalon subtraction realised 
among pole mass, octet potential and gluelump mass, use RS 

scheme
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EH(r) = VO(r) + ⇤H + bHr2

The Lambda -doubling effect breaks the degeneracy between opposite 
parity spin-symmetry 

multiplets and lowers the mass of the multiplets that get mixed 
contributions of different static 

energies.
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V (0.25)

! r ≤ 0.25 fm: pNRQCD potential.

• Lattice data fitted for the r = 0 − 0.25 fm range with the same energy offsets as in
V (0.5).

b
(0.25)
Σ = 1.246GeV/fm2, b

(0.25)
Π = 0.000GeV/fm2 .

! r > 0.25 fm: phenomenological potential.

• V
′(r) =

a1
r +

√

a2r2 + a3 + a4.

• Same energy offsets as in V (0.25).
• Constraint: Continuity up to first derivatives.
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error
bands
come

from the 
uncertainty on the 

gluelump mass

Hybrid state masses from V (0.25)

Solving the coupled Schrödinger equations we obtain
GeV cc̄ bc̄ bb̄

mH ⟨1/r⟩ Ekin PΠ mH ⟨1/r⟩ Ekin PΠ mH ⟨1/r⟩ Ekin PΠ

H1 4.15 0.42 0.16 0.82 7.48 0.46 0.13 0.83 10.79 0.53 0.09 0.86
H′
1 4.51 0.34 0.34 0.87 7.76 0.38 0.27 0.87 10.98 0.47 0.19 0.87

H2 4.28 0.28 0.24 1.00 7.58 0.31 0.19 1.00 10.84 0.37 0.13 1.00
H′
2 4.67 0.25 0.42 1.00 7.89 0.28 0.34 1.00 11.06 0.34 0.23 1.00

H3 4.59 0.32 0.32 0.00 7.85 0.37 0.27 0.00 11.06 0.46 0.19 0.00
H4 4.37 0.28 0.27 0.83 7.65 0.31 0.22 0.84 10.90 0.37 0.15 0.87
H5 4.48 0.23 0.33 1.00 7.73 0.25 0.27 1.00 10.95 0.30 0.18 1.00
H6 4.57 0.22 0.37 0.85 7.82 0.25 0.30 0.87 11.01 0.30 0.20 0.89
H7 4.67 0.19 0.43 1.00 7.89 0.22 0.35 1.00 11.05 0.26 0.24 1.00

Consistency test:

1. The multipole expansion requires
⟨1/r⟩ > Ekin.

Conclusion:

! V (0.25) yields more consistent results.

! As expected the our approach works
better in bottomonium than
charmonium

! Spin symmetry multiplets

H1 {1−−, (0, 1, 2)−+} Σ−
u , Πu

H2 {1++, (0, 1, 2)+−} Πu

H3 {0++, 1+−} Σ−
u

H4 {2++, (1, 2, 3)+−} Σ−
u , Πu

H5 {2−−, (1, 2, 3)−+} Πu

H6 {3−−, (2, 3, 4)−+} Σ−
u , Πu

H7 {3++, (2, 3, 4)+−} Πu
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we observe the Lambda-doubling pattern of 
molecular physics, multiplets that receive 
mixed contributions from Sigma_u and 
Pi_u  have lower masses  then those that 

remain pure Pi_u states

http://arxiv.org/abs/arXiv:1510.04299




in the paper  

we considered  
more general  

eigenstates of the  
octet sector the  

pNRQCD hamiltonian   

light flavour project on

obtain

gives origin to a coupled Schroedinger equation 

that can describe “tetraquarks” —> needs lattice calculations of tetraquarks static 
energies

coefficients C in calculation for any J and f by M. Berwein,  
N. Brambilla, A. Vairo 2017



ConclusionsOutlookII

Nonrelativistic Effective  Field Theories provide a systematic tool 

to investigate a wide range of heavy quarkonium observables         

in the realm of  QCD

Allow us to make calculations with unprecented precision, where high 
order perturbative calculations are possible 

and to systematically factorize short from long range contributions where 
observables are sentitive to the nonperturbative dynamics of QCD

 Allow us to give the appropriate definition and define a calculational scheme 
for quantities of huge phenomenological interest like the qqbar static 

energies, the qqbar potential at finite T 

In the  EFT  framework heavy quark bound states become a unique 
laboratory for the study of strong interaction from  the high energy to the 

low energy scales

Quarkonium is a golden system to study strong interactions

Allow us to obtain  an open quantum systems description, to compute the out-
of-equilibrium evolution of the subsystem and its non-trivial interaction with the  
environment (production, dissociation and recombination of quarkonium).
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More Scales

Quarkonium-Quarkonium/Quarkonium on nuclei 
EFT of Van der Waals Interaction 

   





We have obtained the van der Waals potential also in the 
intermediate distance region (limits for short and large distance reproduce London  

and Casimir Polder) arXiv:1704.03476

http://arxiv.org/abs/arXiv:1704.03476











