Theoretical aspects of precision measurements with neutrons

Vincenzo Cirigliano Los Alamos National Laboratory

Outline

• Introduction — searching for new physics with neutrons

Precision beta decay measurements

- Neutron EDM:
 - Higgs properties
 - High scale supersymmetry

New physics: why?

• The SM is remarkably successful, but it's probably not the whole story

New physics: where?

New degrees of freedom: Heavy? Light & weakly coupled?

New physics: where?

- New degrees of freedom: Heavy? Light & weakly coupled?
- Two complementary paths to probe \mathcal{L}_{BSM}

Role of neutrons

 Neutron physics at the forefront of the intensity frontier → vibrant world-wide program

Structure of weak interactions

P,T, & CP violation

Baryon number violation

Precision neutron decay and new physics

β-decays in the SM and beyond

• In the SM, W exchange \Rightarrow V-A currents, universality

 $\Lambda \sim$ mass scale of new particles

 BSM: sensitive to tree-level and loop corrections from large class of models → "broad band" probe of new physics

Effective Lagrangian at E~GeV

New physics effects are encoded in ten quark-level couplings

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \times \left[(1 + \epsilon_L) \ \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right]$$

$$+ \epsilon_R \ \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d$$

$$+ \epsilon_S \ \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} d$$

$$- \epsilon_P \ \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma_5 d$$

$$+ \epsilon_T \ \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

$$+ \epsilon_i \longrightarrow \tilde{\epsilon}_i \qquad (1 - \gamma_5) \nu_\ell \longrightarrow (1 + \gamma_5) \nu_\ell$$

$$\epsilon_i, \tilde{\epsilon}_i \sim (M_W/\Lambda)^2$$

Linear sensitivity to ε_i (interference with SM)

Quadratic sensitivity to $\hat{\epsilon}_i$ (interference suppressed by m_v/E)

Probing the ε_{α}

- Two classes of observables:
 - I. Total decay rates: probe V, A ($\epsilon_{L,R}$) via extraction of V_{ud} , V_{us}

$$\Gamma_k = (G_F^{(\mu)})^2 \times |\bar{V}_{ij}|^2 \times |M_{\rm had}|^2 \times (1 + \delta_{RC}) \times F_{\rm kin}$$

Channel-dependent effective CKM element

$$V_{ij}$$
 W
 $\bar{\nu}_e$

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{ub}|^2 = 1 + \Delta_{\text{CKM}}(\epsilon_i)$$

Probing the ε_{α}

- Two classes of observables:
 - I. Total decay rates: probe V, A ($\epsilon_{L,R}$) via extraction of V_{ud} , V_{us}
 - 2. Differential distributions (n, nuclei): probe non V-A structures

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{e} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \cdots \right] \right\}$$

Lee-Yang, 1956 Jackson-Treiman-Wyld 1957

 $a(g_A, g_\alpha \epsilon_\alpha)$, $A(g_A, g_\alpha \epsilon_\alpha)$, $B(g_A, g_\alpha \epsilon_\alpha)$, ... isolated via suitable experimental asymmetries

Theory input: gv,A,S,T

CKM unitarity test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\text{CKM}}(\epsilon_i)$$

Hardy-Towner I 4 I I . 5987
FLAVIANET report 1005.2323
Lattice QCD input from FLAG 1607.00299

$$V_{us}$$
 from $K \to \mu \nu$

$$\Delta_{CKM} = -(4 \pm 5)*10^{-4} \quad 0.9\sigma$$

$$\Delta_{CKM} = -(12 \pm 6)*10^{-4} \quad 2.1\sigma$$

$$V_{us}$$
 from $K \to \pi l \nu$

Worth a closer look: at the level of the best LEP EW precision tests

Impact of neutrons

n decay can provide independent extraction of V_{ud} @ 0.02%

Marciano, Sirlin 2006

$$\delta \tau_n \sim 0.35 \text{ s}$$

 $\delta \tau_n / \tau_n \sim 0.04 \%$

Cold beam & Ultra Cold Neutrons

UCNT @ LANL:
$$\tau_n \sim 877.7(7)(3)s$$

1707.01817

$$\delta g_A/g_A \sim 0.1(0.2)\% * \rightarrow 0.025\%$$

($\delta a/a$, $\delta A/A \sim 0.1\%$)

PERC, Nab, UCNA+, ...

Impact of neutrons

n decay can provide independent extraction of V_{ud} @ 0.02%

Marciano, Sirlin 2006

$$\delta \tau_n \sim 0.35 \text{ s}$$

 $\delta \tau_n / \tau_n \sim 0.04 \%$

Cold beam & Ultra Cold Neutrons

UCNT @ LANL:
$$\tau_n \sim 877.7(7)(3)s$$

1707.01817

 $\delta g_A/g_A \sim 0.1(0.2)\% * \rightarrow 0.025\%$ ($\delta a/a , \delta A/A \sim 0.1\%$)

PERC, Nab, UCNA+, ...

 V_{ud} (n) and V_{ud} (0⁺→0⁺) sensitive to different new physics: not a "duplicate" measurement

$$\frac{\bar{V}_{ud}|_{n}}{\bar{V}_{ud}|_{0^{+}}} = 1 + c_{S} \epsilon_{S} + c_{T} \epsilon_{T}$$

$$c_{S, c_{T}} \sim O(I)$$

Probing EL,R couplings

• Assume $\mathcal{E}_{L,R}$ are induced by gauge vertex corrections at high scale

- Low energy probes:
 - $\Delta_{\text{CKM}} \propto \epsilon_{\text{L}} + \epsilon_{\text{R}}$

 $\varphi^{\dagger} \tau^{a} D_{\mu} \varphi \ \bar{q}_{L} \tau^{a} \gamma^{\mu} q_{L}$ $\varphi^{T} \epsilon D_{\mu} \varphi \ \bar{u}_{R} \gamma^{\mu} d_{R}$

- $\delta\Gamma_{(\pi\to\mu\nu)} \propto \epsilon_L \epsilon_R$ [f_{\pi} from LQCD]
- Neutron decay correlations (A, a, B) $\rightarrow \lambda = g_A (I 2 \epsilon_R)$
- LHC (if Λ > few TeV): associated Higgs + W production

Probing EL,R couplings

1703.04751: S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti

Here use CalLat 1704.01114 g_A = 1.285(17)

Updated plot courtesy of E. Mereghetti

- Low-E measurements more constraining than collider
- Neutron decay (λ) + LQCD: competitive sensitivity to ε_R

Probing non V-A (ES,T) couplings

- π, neutron & nuclear decays:
 - Current: $b(0^+ \rightarrow 0^+) [\epsilon_S]$; $\pi \rightarrow e \vee \gamma [\epsilon_T]$
 - Future: b_n , B_n [$\epsilon_{S,T}$] @ 10^{-3} ; b_{GT} [ϵ_{T}](6 He, ...) @ 10^{-3}

Probing non V-A (ES,T) couplings

- π, neutron & nuclear decays:
 - Current: $b(0^+ \rightarrow 0^+) [\epsilon_S]$; $\pi \rightarrow e \vee \gamma [\epsilon_T]$
 - Future: b_n , B_n [$\epsilon_{S,T}$] @ 10^{-3} ; b_{GT} [ϵ_{T}](6He , ...) @ 10^{-3}
- Collider: for heavy new mediators probe same ε_{S,T}

T. Bhattacharya et al, 1110.6448

VC, Gonzalez-Alonso, Graesser, 1210.4553

Probing non V-A ($\varepsilon_{S,T}$) couplings

Bhattacharya, et al 1606.07049

 $\epsilon_{S,T}$ @ μ = 2 GeV (MS-bar)

Probing mass scales $\Lambda_{S,T} \sim 5-10 \,\text{TeV}$

Neutron EDM in the LHC era**

**Two main results from the LHC, so far:

- (I) There is a Higgs boson with m ~125 GeV and
 - (2) Everything else (if any) is quite heavier

EDMs and symmetry breaking

ullet EDMs of non-degenerate systems violate P and T: ${ullet} {\cal H} \sim {m d} \, {ec J} \cdot {ec E}$

CPT invariance ⇒ nonzero EDMs imply CP violation

EDMs as probes of new physics

I. Essentially free of SM "background" (CKM) *1

EDMs in $e \cdot cm$

System	current	projected	SM (CKM)
e	$\sim 10^{-28}$	10^{-29}	$\sim 10^{-38}$
μ	$\sim 10^{-19}$		$\sim 10^{-35}$
au	$\sim 10^{-16}$		$\sim 10^{-34}$
n	$\sim 10^{-26}$	10^{-28}	$\sim 10^{-31}$
p	$\sim 10^{-23}$	$10^{-29} **$	$\sim 10^{-31}$
¹⁹⁹ Hg	$\sim 10^{-29}$	10^{-30}	$\sim 10^{-33}$
$^{129}\mathrm{Xe}$	$\sim 10^{-27}$	10^{-29}	$\sim 10^{-33}$
225 Ra	$\sim 10^{-23}$	10^{-26}	$\sim 10^{-33}$
• • •	• • •		• • •

*I Observation would signal new physics or a tiny QCD $\,\theta$ -term (< 10^{-10}). Multiple measurements can disentangle the two effects. In the rest of the discussion assume that $\,\theta$ relaxes to zero dynamically (Peccei-Quinn)

EDMs as probes of new physics

I. Essentially free of SM "background" (CKM) *1

2. Sensitive to high scale BSM physics ($\Lambda\sim10-100$ TeV)

$$d_n \propto \frac{m_q}{\Lambda^2} e \, \phi_{CP}$$

3. Probe key ingredient of baryogenesis

Sakharov '67

- B violation
- C and CP violation
- Departure from equilibrium*

Effective Lagrangian at E~GeV

• New physics effects encoded in local operators with couplings $\sim 1/\Lambda^2$

Neutron EDM

Neutron EDM from BSM operators is poorly known.
 This strongly dilutes the constraining power of measurements

Pospelov-Ritz hep-ph/0504231 and refs therein
$$d_n = -(0.35 \pm 0.18) d_u + (1.4 \pm 0.7) d_d + (?\pm?) d_s$$

$$-(0.55 \pm 0.28) e \tilde{d}_u - (1.1 \pm 0.55) e \tilde{d}_d \pm (50 \pm 40) \, \text{MeVe} \, d_W$$
 QCD Sum Rules (50%) QCD Sum Rules + NDA (~100%)

Neutron EDM

Neutron EDM from BSM operators is poorly known.
 This strongly dilutes the constraining power of measurements

- Recent development: matrix elements from LQCD
 - quark EDM: tensor charges @ 10% [✔]
 - quark CEDM [ongoing (LANL, BNL)]
 - Weinberg & 4q [future]

Bhattacharya, VC, Gupta, Lin, Yoon, PRL 115 (2015) 212002 [1506.04196]

EDMs and CPV Higgs couplings

So far, Higgs properties are compatible with SM expectations

 Still room for deviations: is this the SM Higgs? Key question at LHC Run 2

 EDMs can help constraining non-standard CPV Higgs couplings

• A handful of leading $(1/\Lambda^2)$ gauge-invariant couplings

$$\mathcal{L}_{6}^{CPV} = -v \frac{\theta'}{8\pi} \frac{\alpha_{s}}{8\pi} h G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} + v^{2} \operatorname{Im} Y_{q}' \bar{q} i \gamma_{5} q h - \frac{i}{2} \frac{\tilde{d}_{q}}{q} g_{s} \bar{q} \sigma \cdot G \gamma_{5} q \left(1 + \frac{h}{v}\right) + O(h^{2})$$

$$\theta', \operatorname{Im} Y_q' \sim \frac{1}{\Lambda^2} \qquad \tilde{d}_q \sim \frac{v}{\Lambda^2}$$

• Signatures of various operators: Higgs-gluon-gluon (θ')

LHC: Higgs production via gluon fusion

Low Energy: quark (C)EDM + Weinberg

• Signatures of various operators: $\frac{\tilde{d}_q}{d_q}$ for $q \neq t$

LHC: Higgs (+ jet) production

Low Energy: quark (C)EDM, Weinberg

Signatures of various operators: pseudoscalar Yukawas q≠t

Low Energy: quark (C)EDM, Weinberg, and de

Signatures of various operators: top pseudo-scalar Yukawa and CEDM

LHC: pp \rightarrow h (via ggF), $t\bar{t}$, $t\bar{t}$ h

Low Energy: quark (C)EDM, Weinberg, and de

Bounds

Bounds

- Neutron EDM is teaching us something about the Higgs!
- Future: factor of 2 at LHC; EDM constraints scale linearly
- Uncertainty in matrix elements strongly dilutes EDM constraints

Bounds

Much stronger impact of neutron EDM with reduced uncertainties

$$d_{n,p}[\tilde{d}_{u,d}] \quad d_{n,p}[d_s] \quad d_{n,p}[d_W]$$
25%
50%

• Target for Lattice QCD in the 5-year time scale

EDMs in high-scale SUSY models

- Higgs mass + absence of other signals point to heavy super-partners
- "Split-SUSY": retain gauge coupling unification and DM candidate

Arkani-Hamed, Dimopoulos 2004, Giudice, Romanino 2004, Arkani-Hamed et al 2012, Altmannshofer-Harnik-Zupan 1308.3653, ...

EDMs among a handful of observables capable of probing such high scales

Same CPV phase controls d_e, d_n[d_q]

EDMs in high-scale SUSY models

 Both d_e and d_n within reach of current searches for M₂, μ < 10 TeV

Bhattacharya, VC, Gupta, Lin, Yoon Phys. Rev. Lett. 115 (2015) 212002 [1506.04196]

EDMs in high-scale SUSY models

- Both d_e and d_n within reach of current searches for M₂, μ < 10 TeV
- Studying the ratio d_n /d_e with precise matrix elements → stringent upper bound d_n < 4 × 10⁻²⁸ e cm
- Split-SUSY can be falsified by current nEDM searches

Bhattacharya, VC, Gupta, Lin, Yoon Phys. Rev. Lett. 115 (2015) 212002 [1506.04196]

Example of model diagnosing enabled by multiple measurements (e,n) and controlled theoretical uncertainty

Conclusions

• Precision neutron experiments provide strong probes of new physics

- Neutron decay:
 - Measurements of lifetime ($\delta \tau_n / \tau_n \sim 0.04 \%$) and decay correlations (@ $\leq 0.1\%$) are a "broad band" BSM probe
 - In "heavy BSM" case, discovery window exists well into the LHC era (ε_L - ε_R and ε_S - ε_T plots)
- Neutron EDM: powerful probe of new sources of CP violation
 - Strong constraints on CPV Higgs couplings (better than LHC)
 - Sensitivity to high-scale BSM scenarios (example: split SUSY)

Thank you!

A drawing by Bruno Touschek

Backup

Quarks couple directly to photon (in a CP-odd way)

$$\mathcal{L} = -\frac{i}{2} \sum_{q=u,d,s} \frac{\mathbf{d}_{\mathbf{q}}}{\mathbf{q}} \bar{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu}$$

Quarks couple directly to photon (in a CP-odd way)

$$\mathcal{L} = -\frac{i}{2} \sum_{q=u,d,s} \frac{\mathbf{d}_{\mathbf{q}}}{\mathbf{q}} \bar{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu}$$

Problem "factorizes": need so-called tensor charge of the neutron

$$d_N = d_u g_T^{(N,u)} + d_d g_T^{(N,d)} + d_s g_T^{(N,s)}$$

$$\langle N | \bar{q}\sigma_{\mu\nu}q | N \rangle \equiv g_T^{(N,q)} \bar{\psi}_N \sigma_{\mu\nu} \psi_N$$

 Discretize space-time into a finite Euclidean lattice (a,V) → perform Monte Carlo integration of the path integral

Do it on many little universes with different m_q, a, V

$$g_T^{(n,u)} = -0.23(3)$$

$$g_T^{(n,d)} = 0.77(7)$$

$$g_T^{(s)} = 0.008(9)$$

O(10%) error including all systematics: excited states, continuum, quark masses, volume

Ongoing efforts by LANL, BNL, LBL groups to tackle other operators

EDMs and baryogenesis models

 In Supersymmetry, CPV phases appearing in the gaugino-higgsino mixing contribute to both baryogenesis and EDM

- In this model, successful baryogenesis implies a "guaranteed signal" for EDMs
- Within reach of planned experiments, with caveat that "constant EDM" lines shift due to hadronic uncertainties!

CKM unitarity test

V _{ud}	$(\pi^{\pm} \to 0^{+})$ $(\pi^{\pm} \to \pi^{0} e \nu)$	$n \rightarrow pe\overline{\nu}$	$\pi o \mu \nu$
V _{us}	$K \rightarrow \pi \mid \nu$	$\Lambda \rightarrow pev,$	$K \rightarrow \mu \nu$
	V	V,A	A

- Currently, the most precise input comes from pure V or A channels
 - V: nuclear decays and semi-leptonic K decays
 - A: leptonic decays $\rightarrow V_{us} / V_{ud}$ (need f_K / f_{π})

Beta decays and new physics models

- Model → set overall size and pattern of effective couplings
- Beta decays can play very useful diagnosing role
- Qualitative picture:

"DNA matrix"

	٤L	٤ _R	٤ _P	٤s	ε _T	
LRSM	x	✓	x	x	x	
LQ	✓	x	✓	✓	✓	
2HDM	x	x	✓	✓	x	
MSSM	✓	✓	✓	✓	✓	
OUR FAVORITE		•••		• • •		

Can be made quantitative