Are there any narrow K⁻-nuclear states?

J. Hrtánková + J. Mareš

Nuclear Physics Institute, Řež

PLB 770 (2017) 342; PRC 96, 015205 (2017).

EXA 2017, Wien, 10 - 15 September, 2017

The speaker selected by EXA organizers (left) and the corresponding author (right).

- Self-consistent calculations of *K*⁻-nuclear quasi-bound states using the following chiral meson-baryon interaction models:
 - Prague (P) (A. Cieply, J. Smejkal, Nucl. Phys. A 881 (2012) 115)
 - Kyoto-Munich (KM) (Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881 (2012) 98)
 - Murcia (M1 and M2) (Z. H. Guo and J. A. Oller, Phys. Rev. C 87 (2013) 035202)
 - Bonn (B2 and B4) (M. Mai and U.-G. Meiner, Nucl. Phys. A 900 (2013) 51)

Model

• Klein-Gordon equation for K^-

$$\left[\tilde{\omega}_{K}^{2}+\vec{\nabla}^{2}-m_{K}^{2}-\Pi_{K}(\vec{p}_{K},\omega_{K},\rho)\right]\phi_{K}=0\;,\;\;$$

where complex energy $ilde{\omega}_{K}=m_{K}-B_{K}-\mathrm{i}\Gamma_{K}/2-V_{C}=\omega_{K}-V_{C}$

Self-energy operator

$$\Pi_{\mathcal{K}} = 2\operatorname{Re}(\omega_{\mathcal{K}^{-}})V_{\mathcal{K}^{-}}^{(1)} = -4\pi\left(F_{0}\frac{1}{2}\rho_{p} + F_{1}\left(\frac{1}{2}\rho_{p} + \rho_{n}\right)\right),$$

 F_0 and F_1 – isospin 0 and 1 in-medium scattering amplitudes (in the K^- -nucleus frame) derived from a chiral meson-baryon interaction model

- Nucleus described within an RMF model
- Static self-consistent calculations core polarization effects up to ≃ 5 MeV in K⁻ binding energies (D. Gazda, J. Mareš, Nucl. Phys. A 881 (2012) 159)

Fig.1: Energy dependence of real (left) and imaginary (right) parts of free-space K^-p amplitudes in considered models.

Fig.2: Energy dependence of real (left) and imaginary (right) parts of free-space K^-n amplitudes in considered models.

In-medium K^-N amplitudes

 Free space amplitudes → in-medium amplitudes - WRW method (T. Wass, M. Rho, W. Weise, Nucl. Phys. A 617 (1997) 449)

$$F_{1} = \frac{\frac{\sqrt{s}}{m_{N}}F_{K^{-}n}(\sqrt{s})}{1 + \frac{1}{4}\xi_{k}\frac{\sqrt{s}}{m_{N}}F_{K^{-}n}(\sqrt{s})\rho}, \quad F_{0} = \frac{\frac{\sqrt{s}}{m_{N}}[2F_{K^{-}p}(\sqrt{s}) - F_{K^{-}n}(\sqrt{s})]}{1 + \frac{1}{4}\xi_{k}\frac{\sqrt{s}}{m_{N}}[2F_{K^{-}p}(\sqrt{s}) - F_{K^{-}n}(\sqrt{s})]\rho}$$

where $\xi_{k} = \frac{9\pi}{p_{t}^{2}}4\int_{0}^{\infty}\frac{dt}{t}\exp(iqt)j_{1}^{2}(t), \quad q = \frac{1}{p_{t}}\sqrt{\omega_{K^{-}}^{2} - m_{K^{-}}^{2}}.$

• P + Pauli + SE model (A. Cieply, J. Smejkal, Nucl. Phys. A 881 (2012) 115)

$$\begin{split} F_{ij}(p,p';\sqrt{s}) &= -\frac{g_i(p)g_j(p')}{4\pi f_i f_j} \sqrt{\frac{M_i M_j}{s}} \left[(1 - C(\sqrt{s}) \cdot G(\sqrt{s})^{-1}) \cdot C(\sqrt{s}) \right]_{ij} ,\\ G_i(\sqrt{s};\rho) &= \frac{1}{f_i^2} \frac{M_i}{\sqrt{s}} \int_{\Omega_i(\rho)} \frac{d^3 \vec{p}}{(2\pi)^3} \frac{g_i^2(\rho)}{p_i^2 - \rho^2 - \prod_i (\sqrt{s},\vec{p};\rho) + i0} . \end{split}$$

In-medium modified $\bar{K}N$ amplitudes

Fig.3: Energy dependence of reduced free-space (dotted line) $f_{K^-N} = \frac{1}{2}(f_{K^-P} + f_{K^-n})$ amplitude compared with WRW modified amplitude (solid line), Pauli (dashed line), and Pauli + SE (dot-dashed line) modified amplitude for $\rho_0 = 0.17$ fm⁻³ in the P model.

In-medium modified $\bar{K}N$ amplitudes

Fig.4: K^- nuclear potential in ⁴⁰Ca calculated using K^-N P amplitudes at threshold (dashed lines) and with \sqrt{s} (solid lines), in two in-medium versions: WRW (left panel) and including Pauli blocking and hadron self-energies (right panel).

Energy dependence

- K^-N amplitudes are a function of \sqrt{s} $(s = (E_N + E_{K^-})^2 - (\vec{p}_N + \vec{p}_{K^-})^2)$
- K^-N cms frame $\rightarrow K^-$ -nucleus frame $\vec{p}_N + \vec{p}_{K^-} \neq 0$ (A. Cieplý, E. Friedman, A. Gal, D. Gazda, J. Mareš, PLB 702 (2011) 402)

$$\sqrt{s} = E_{th} - B_N \frac{\rho}{\bar{\rho}} - \xi_N \left[\frac{B_{K^-}}{\rho_{max}} + 23 \left(\frac{\rho}{\bar{\rho}} \right)^{2/3} + V_C \left(\frac{\rho}{\rho_{max}} \right)^{1/3} \right] + \xi_{K^-} \operatorname{Re} V_{K^-}(r) ,$$

- where $B_N = 8.5$ MeV and $\xi_{N(K^-)} = m_{N(K^-)}/(m_N + m_{K^-})$; Low-density limit $\delta\sqrt{s} \to 0$ as $\rho \to 0$, where $\delta\sqrt{s} = \sqrt{s} - E_{th}$.
- B_{K^-} and $V_{K^-} \Rightarrow$ self-consistency scheme

Energies probed in the calculations

Fig.5: Subthreshold energies probed in the ${}^{16}O+K^-$ nucleus as a function of relative density ρ/ρ_0 , calculated self-consistently using K^-N amplitudes in the P, KM, M1, and M2 models.

K^{-} 1s binding energies and widths

Fig.6: 1s K^- binding energies (left) and corresponding widths (right) in various nuclei calculated self-consistently in the P, KM, M1, and M2 models.

• K^- interactions with two and more nucleons - recent analysis of kaonic atom data including branching ratios of K^- absorption by Friedman and Gal (*NPA 959 (2017) 66*)

$$2\operatorname{Re}(\omega_{K^{-}})V_{K^{-}}^{(2)} = -4\pi B(\frac{\rho}{\rho_{0}})^{\alpha}\rho , \qquad (1)$$

where *B* is a complex amplitude and α is positive

• ImB multiplied by a kinematical suppression factor to account for phase space reduction

Table 1: Values of the complex amplitude *B* and exponent α used to evaluate $V_{K^-}^{(2)}$ for all meson-baryon interaction models considered in this work.

	P1	KM1	P2	KM2
α	1	1	2	2
Re <i>B</i> (fm)	-1.3±0.2	-0.9±0.2	$-0.5 {\pm} 0.6$	$0.3{\pm}0.7$
Im <i>B</i> (fm)	1.5±0.2	$1.4{\pm}0.2$	4.6±0.7	$3.8{\pm}0.7$
	B2	B4	M1	M2
α	0.3	0.3	0.3	1
Re <i>B</i> (fm)	2.4±0.2	$3.1{\pm}0.1$	$0.3{\pm}0.1$	$2.1{\pm}0.2$
ImB (fm)	0.8±0.1	$0.8 {\pm} 0.1$	$0.8 {\pm} 0.1$	$1.2{\pm}0.2$

• Only P and KM models found acceptable by the F+G analysis (NPA 959 (2017) 66)

• Experiments with kaonic atoms probe the K^- optical potential (mainly its imaginary part) up to $\sim 50\%$ of ρ_0

• We consider two limiting cases for $V_{K^{-}}^{(2)}$ in our calculations:

- full density option (FD) form (1) in the entire nucleus
- half density limit (HD) fix $V_{K^-}^{(2)}$ at constant value $V_{K^-}^{(2)}(0.5\rho_0)$ for $\rho(r) \ge 0.5\rho_0$
- Total K^- optical potential $V_{K^-} = V_{K^-}^{(1)} + V_{K^-}^{(2)}$

Fig.7: The real (left) and imaginary (right) parts of the K^- optical potential in ²⁰⁸Pb, calculated self-consistently in the KM1 model, for two versions of the K^- multinucleon potential. The shaded area stands for uncertainties. The single-nucleon K^- potential (KN, green solid line) calculated in the KM model is shown for comparison.

Contributions to the total K^- optical potential

Fig.8: The respective contributions from K^-N and K^-NN potentials to the total real and imaginary K^- optical potential in the ²⁰⁸Pb+ K^- nucleus, calculated self-consistently in the KM1 model and FD variant. The single-nucleon K^- potential (green solid line) calculated in the KM model is shown for comparison.

Fig.9: Ratios of $Im V_{K^-}^{(1)}$ and $Im V_{K^-}^{(2)}$ potentials to the total $Im V_{K^-}$ as a function of radius, calculated self-consistently for $^{208}Pb+K^-$ system in the KM1 model and different option for the K^- multinucleon potential (left) and the comparison of these ratios calculated in different meson-baryon interaction models for FD option (right). The vertical lines denoting $\sim 15\%$ of ρ_0 are shown for comparison.

K^- 1s binding energies and widths

Table 2: 1s K^- binding energies B_{K^-} and widths Γ_{K^-} (in MeV) in various nuclei calculated using the single nucleon K^-N amplitudes (denoted KN); plus a phenomenological amplitude $B(\rho/\rho_0)^{\alpha}$, where $\alpha = 1$ and 2, for the HD and FD options.

KM model		$\alpha = 1$		lpha=2		
		KN	HD	FD	HD	FD
¹⁶ O	B_{K^-}	45	34	not	48	not
	$\Gamma_{K^{-}}$	40	109	bound	121	bound
⁴⁰ Ca	B_{K^-}	59	50	not	64	not
	$\Gamma_{K^{-}}$	37	113	bound	126	bound
²⁰⁸ Pb	B_{K^-}	78	64	33	80	53
	Г.,	38	108	273	122	420
	1 K -	50	100	215	122	729
P	model	50	α	= 1	α	= 2
P	$\frac{1}{B_{K^-}}$	64	100 α 49	= 1 not	α 63	= 2 not
P 160	r_{K^-} B_{K^-} Γ_{K^-}	64 25	100 α 49 94	= 1 not bound	α 63 117	= 2 not bound
Р 1 ⁶ 0	$\frac{B_{K^-}}{B_{K^-}}$	64 25 81	α 49 94 67	= 1 not bound not	α 63 117 82	= 2 not bound not
Р 16О 6О Са	$\frac{B_{K^-}}{B_{K^-}}$	64 25 81 14		= 1 not bound not bound	$\begin{array}{c} \alpha \\ 63 \\ 117 \\ 82 \\ 120 \end{array}$	= 2 not bound not bound
¹⁶ O ⁴⁰ Ca ²⁰⁸ Pb	$ \begin{array}{c} model \\ B_{K^{-}} \\ \Gamma_{K^{-}} \\ B_{K^{-}} \\ \Gamma_{K^{-}} \\ B_{K^{-}} \end{array} $	64 25 81 14 99	α 49 94 67 95 82	= 1 not bound not bound 36	$ \begin{array}{r} \alpha \\ 63 \\ 117 \\ 82 \\ 120 \\ 96 \\ 96 \end{array} $	= 2 not bound not bound 47

- Calculations of K^- -nuclear quasi-bound states in various nuclei
- K⁻ single-nucleon potentials based on chiral meson-baryon interaction models:
 - large model dependence of K^- binding energies
 - relatively narrow K^- widths
- K^- multinucleon interactions inside the nucleus included:
 - *K*⁻ nuclear quasi-bound states in many-body systems, if they ever exist, have huge widths, considerably exceeding their binding energies

Thank you Aleš Cieplý, Eli Friedman, and Avraham Gal!