

International Conference on Exotic Atoms EXA 2017



# Exotic atoms at extremely high magnetic fields: the case of Neutron Stars atmosphere

Wien, 12.09.2017

<u>A. Fontana</u><sup>1</sup>, A. Colombi<sup>2</sup>, P. Carretta<sup>2</sup>, A. Drago<sup>3</sup>, P. Esposito<sup>4</sup>, P. Gianotti<sup>5</sup>, C. Giusti<sup>1,2</sup>, D. Lonardoni<sup>6</sup>, A. Lovato<sup>7</sup>, V. Lucherini<sup>5</sup>, F. Pederiva<sup>7</sup>

<sup>1</sup>INFN - Sezione di Pavia

<sup>2</sup>Physics Department - University of Pavia

<sup>3</sup>Physics and Earth Sciences Department, University of Ferrara and INFN - Sezione di Ferrara

<sup>4</sup>Anton Pannekoek Institute for Astronomy, University of Amsterdam

<sup>5</sup>INFN - Laboratori Nazionali di Frascati

<sup>6</sup>National Superconducting Cyclotron Laboratory, Michigan State University and Theoretical Division, Los Alamos National Laboratory

<sup>7</sup>Physics Department, University of Trento and INFN Trento Institute for Fundamental Physics and Application



Contact: andrea.fontana@pv.infn.it



International Conference on Exotic Atoms EXA 2017



# Exotic atoms at extremely high magnetic fields: the case of Neutron Stars atmosphere

Wien, 12.09.2017

<u>A. Fontana</u><sup>1</sup>, A. Colombi<sup>2</sup>, P. Carretta<sup>2</sup>, A. Drago<sup>3</sup>, P. Esposito<sup>4</sup>, P. Gianotti<sup>5</sup>, C. Giusti<sup>1,2</sup>, D. Lonardoni<sup>6</sup>, A. Lovato<sup>7</sup>, V. Lucherini<sup>5</sup>,

F. Pederiva<sup>7</sup>

<sup>1</sup>INFN - Sezione di Pavia

<sup>2</sup>Physics Department - University of Pavia

<sup>3</sup>Physics and Earth Sciences Department, University of Ferrara and INFN - Sezione di Ferrara

<sup>4</sup>Anton Pannekoek Institute for Astronomy, University of Amsterdam

<sup>5</sup>INFN - Laboratori Nazionali di Frascati

<sup>6</sup>National Superconducting Cyclotron Laboratory, Michigan State University and Theoretical Division, Los Alamos National Laboratory

<sup>7</sup>Physics Department, University of Trento and INFN Trento Institute for Fundamental Physics and Application

- Key facts about Neutron Stars Mass and radius Star composition Magnetic field
- Exotic atoms on NS? Quark/Hybrid stars NS/QS conversion

- Atoms in extreme magnetic fields
   Cylindrical atoms
   Center of mass motion
   Hydrogen spectrum
   Muonic hydrogen/Sigmium
- Outlook

# **NEUTRON STAR**



#### Not only neutrons!

#### Main features of a Neutron Star (NS)<sup>[1,2]</sup>:

- very high density: nuclear saturation:  $\rho_{sat} \approx 2.5 \times 10^{14} \frac{g}{cm^3}$  NS surface:  $\approx 3 \times 10^{-3} \rho_{sat}$  NS core:  $\approx 7 \times \rho_{sat}$
- extremely intense magnetic field: ms pulsar:  $10^7 G$  magnetar:  $10^{16} G$

• ...

## **EQUATION OF STATE**

Key goal: to determine the **equation of state** (EOS) for ultradense matter, i.e. the relation between density and pressure:

- At densities exceeding a few times the nuclear density, exotic states of matter may appear such as hyperons and Bose condensates
- At higher densities a phase transition to strange quark matter may occur

Ultradense matter EOS manifests itself as a mass-radius (M-R) relation.



GCR: quantum Monte Carlo calculations

SLy4: Skyrme density functional calculation

APR: variational calculations

Many theoretical EOS available in the literature, each predicting a different M-R relation for NS.

# MASS AND RADIUS

Mass and radius are the main observables in the study of NS:

- Masses are measured with great precision from binary radio pulsars timing
- Radius measurements much more challenging, no reliable data
- M and R simultaneous methods not available
- $\rightarrow$  difficult to discriminate between EOS models.

#### Some open classical problems:

- Stiffness of the equation of state
- Hyperon puzzle (hyperons soften the EOS and reduce mass)
- Importance of three-body interactions and role of delta resonances
- The very nature of star uncertain: Neutron, Quark or Hybrid stars?

#### **NEUTRON STAR/QUARK STAR**



#### NEUTRON STAR/QUARK STAR



The **conversion process** of a NS into a QS was proposed by different authors <sup>[8,9]</sup> and is still under study.

**Two Families scenario** <sup>[10,11]</sup>: droplet becomes a macroscopic expanding bubble of QM. Hydrodynamical description in two steps: rapid burning (few ms), favoured by instabilities, followed by slow burning (~10 s), with strangeness diffusion.

In this model NS co-exist with quark stars (QS):

- NS can be very compact and have a maximum mass of  $\sim 1.5-1.6 \ensuremath{M_{\odot}}$
- QS can have large radii and be even more massive, up to  $2.75 M_{\odot}$ .

# NS/QS CONVERSION AND TWO FAMILIES SCENARIO



FIG. 1: (color online) Model: Set 1,  $M = 1.4M_{\odot}$ . Conversion front (red) and surface of the neutron star (yellow) at different times t. Spatial units  $10^6$  cm.

- Three-dimensional hydrodynamic simulations of the combustion process: temperature profiles and expected neutrino signal.
- The process is a powerful source of neutrinos: initial luminosity 3 × 10<sup>52</sup> erg/s.
- Neutrino ablation can lead to a significant mass ejection of the nuclear envelope.

# MODELS FOR NS/QS CONVERSION



Other models:

• Quark Droplet Nucleation: <sup>[12]</sup>

quark deconfinement as first order phase transition, with formation of a critical size drop (as dew formation in supersaturated vapor).

• Quark-Novae model [13]

quark deconfinement as detonation/deflagration, with significant amount of matter ejection by a mechanical shock at the end of the process.

In all cases, **exotic matter** could be **ablated by neutrinos** towards the surface of the star.

## ATMOSPHERE OF NS

We focus our attention on the **atmosphere**:

- theoretical models from H, He, C atmospheres and for Fe crust
- difference between isolated and binary NS (accretion process)
- good fits to data by recent C atmosphere models

Given the uncertainties on the EOS for these stars, it is worth to look for **new observables**:

- 1. looking first at the H case...
- 2. ... and trying to extend what we find to exotic atoms.

The **atmosphere of a QS** could be radically **different** from the **atmosphere of a NS**. Is there a chance to distinguish between these two types of compact stars?

# ATOMS IN STRONG MAGNETIC FIELDS

Effects of a **strong magnetic field** on H atoms (grey areas: ellipsoids with probability to find an electron  $> e^{-1}$ ; solid dots: protons)



 ${\sf E}$  field as perturbation: "spherical" atomic levels  $\rightarrow$  "cylindrical" atomic levels  ${}^{[3,4]}$ 



 $\hat{\rho}=\rho_0\ll a_0$ 

 $\rho_{\rm 0}$  : radius of ground state

**Reference field** for NS:  $B_0 = \frac{m_e^2 e^3 c}{\hbar^3} = 2.3505 \times 10^9 G$ , corresponding to cyclotron radius  $\equiv$  Bohr radius.

#### QUANTUM MECHANICAL TREATMENT

- Numerical solutions exist only for H atom
- Landau energy levels: principal quantum number n
- 1D Schrödinger equation with solution  $f_{m\nu}(z)$ :

$$-\frac{\hbar^2}{2m_e\rho_0^2}f_{m\nu}'' - \frac{e}{\rho_0}V_m(z)f_{m\nu} = E_{m\nu}f_{m\nu} \qquad m,\nu = 0, 1, 2, \dots$$

• Two quantum numbers m and  $\nu$ : m for radial excitations

$$\rho_m = (2m+1)^{1/2} \rho_0 \qquad m = 0, 1, 2, \dots$$

and  $\nu$  to account for longitudinal nodes

• Two types of states<sup>[5]</sup>:



Classification of states with the parameter  $b \equiv \frac{B}{B_0}$ 

#### **ENERGY LEVELS**

#### **INFINITE PROTON MASS**

$$E_{m0} \approx -0.16 l_m^2 \quad \text{a.u.} \quad (\text{for } 2m+1 \ll b) \quad l_m = \ln\left(\frac{b}{2m+1}\right)$$

$$E_{m\nu} = -\frac{1}{(2\nu_1 + \delta)^2} \quad \text{a.u.} \quad (\nu_1 = 1, 2, 3, \dots)$$

$$\delta = \begin{cases} 2\rho_m/a_0 & \nu = 2\nu_1 - 1\\ [\ln(a_0/\rho_m)]^{-1} & \nu = 2\nu_1 \end{cases}$$

#### **FINITE PROTON MASS**

$$m_e 
ightarrow \mu = rac{m_e imes m_p}{m_e + m_p}$$
 $\Delta E = 29.6 \ m \, rac{B}{4.7 imes 10^{12} \ G} \ eV$ 

# **ENERGY LEVELS**



Continuous lines: infinite proton mass

Dashed lines: finite proton mass

#### **CENTER OF MASS MOTION**

Atoms motion described by a **pseudo-momentum K**, derived from canonical momentum  $\Pi$  <sup>[6]</sup>:

$$\begin{split} \mathbf{K} &\equiv \mathbf{\Pi} - \frac{e}{c} \mathbf{B} \times \mathbf{r} \\ \mathbf{K} &= \mathbf{K}_e + \mathbf{K}_p, \\ \mathbf{r}_c &= \frac{c \mathbf{B} \times \mathbf{K}_\perp}{e B^2}, \qquad \mathbf{r}_c = \frac{\mathbf{K}_\perp}{b} \text{ a.u.} \end{split}$$

 $K_{\perp}$ : **K** component orthogonal to **B**.

#### Motion unit scale:

$$1 \, K_{\perp}(a.u.) = 3.73 \, keV/c$$



Two different solutions:

- centered states
- decentered states

Atoms moving across **B** may become decentered: **proton external to electron cloud!** The guiding center  $\mathbf{r}_c$  is perpendicular to **B** and to **K**.

# SOLUTION FOR HYDROGEN

#### **Deeply bound states**

• centered states:

 $E_{m0}(K_{\perp})\simeq E_m+rac{K_{\perp}^2}{2M_{\perp m}}$ 

- $M_{\perp m}$ : effective transverse mass
- decentered states:

 $E_{m0}(K_{\perp})\sim -rac{b}{K_{\perp}}$ 

#### Weakly bound states:

analytical approximations<sup>[7]</sup>

**Validity limit** of the model:  $100 \le b \le 10^6$ .



### **EXOTIC ATOMS?**

#### VALIDITY LIMIT

 $100 \le b \le 10^{6}$ 

#### DEFINITION

$$b = \frac{B}{B_0} = \frac{\hbar^3 B}{m_e^2 e^3 c}$$

|                        | DEFINITION                                          |
|------------------------|-----------------------------------------------------|
| VALIDITY LIMIT         |                                                     |
| $100 \leq b \leq 10^6$ | $b = \frac{B}{B_0} = \frac{\hbar^3 B}{m_e^2 e^3 c}$ |

• muonic hydrogen (p- $\mu^-$ ):

$$m_e o m_\mu \quad o \quad b = rac{\hbar^3 B}{m_\mu^2 e^3 c}, rac{b}{b^H} \sim 10^{-2} o B : 10^{12} \ G o 10^{16} \ G$$

|                      | DEFINITION                                          |  |
|----------------------|-----------------------------------------------------|--|
| VALIDITY LIMIT       |                                                     |  |
| $100 \le b \le 10^6$ | $b = \frac{B}{B_0} = \frac{\hbar^3 B}{m_e^2 e^3 c}$ |  |

• muonic hydrogen (p- $\mu^-$ ):

$$m_e \to m_\mu \quad \to \quad b = rac{\hbar^3 B}{m_\mu^2 e^3 c}, rac{b}{b^H} \sim 10^{-2} \to B : 10^{12} \ G \to 10^{16} \ G$$

• Sigmium  $(\Sigma^+ - e^-)$ :  $m_e \to m_{\Sigma} \to b = \frac{\hbar^3 B}{m_{\Sigma}^2 e^3 c}, \frac{b}{b^H} \sim 1 \to B : 10^{12} G \to 10^{12} G$ 

|                      | DEFINITION                                          |  |
|----------------------|-----------------------------------------------------|--|
| VALIDITY LIMIT       |                                                     |  |
| $100 \le b \le 10^6$ | $b = \frac{B}{B_0} = \frac{\hbar^3 B}{m_e^2 e^3 c}$ |  |

• muonic hydrogen (p- $\mu^-$ ):

$$m_e \to m_\mu \quad \to \quad b = rac{\hbar^3 B}{m_\mu^2 e^3 c}, rac{b}{b^H} \sim 10^{-2} \to B : 10^{12} \ G \to 10^{16} \ G$$

• Sigmium 
$$(\Sigma^+ - e^-)$$
:  
 $m_e \to m_{\Sigma} \to b = \frac{\hbar^3 B}{m_{\Sigma}^2 e^3 c}, \frac{b}{b^H} \sim 1 \to B : 10^{12} G \to 10^{12} G$ 

Scaling rule:

$$z = \frac{\mu}{m_e}, \qquad a_0 = \frac{a_0^H}{z} \qquad E = z \times E^H$$

#### **MUONIC HYDROGEN**



#### SIGMIUM



#### PRELIMINARY RESULTS FOR $1^- \rightarrow 0^+$

| Atom            | $\textbf{K}_{\perp} \text{ (a.u.)}$ | Energy~(eV) | $oldsymbol{\lambda}$ (nm) | Note  |
|-----------------|-------------------------------------|-------------|---------------------------|-------|
| Hydrogen        | 0                                   | 147.5877    | 8.4                       | UV    |
| 33              | 10                                  | 146.6178    | 8.5                       | "     |
| 3.3             | 50                                  | 129.1634    | 9.6                       | "     |
| "               | 100                                 | 77.6384     | 16                        | "     |
| Muonic hydrogen | 0                                   | 17848.5     | 0.06946                   | X-ray |
| "               | 10                                  | 17851.5     | 0.069453                  | "     |
| "               | 50                                  | 17870.2     | 0.069381                  | "     |
| "               | 100                                 | 17885.1     | 0.069323                  | "     |
| Sigmium         | 0                                   | 149.832     | 8.27                      | UV    |
| "               | 10                                  | 149.029     | 8.32                      | **    |
| 33              | 50                                  | 134.488     | 9.22                      | "     |
| "               | 100                                 | 91.7076     | 13.52                     | "     |

Transitions with B intensities as indicated in the previous slides.

# CONCLUSIONS

- Hydrogen-like atoms, involving μ<sup>-</sup>, Σ<sup>+</sup> or other exotic constituents could be formed in the NS/QS conversion
- We have investigated the **energy levels structure** of hypothetical exotic atoms and made some predictions on transitions that could help to **discriminate among EOS**
- Hyperfine interaction for cylindrical atoms: calculation in progress...
- If the results are confirmed, the proposed calculations could give a direct evidence of the presence of hyperons on NS
- Request to the community: it would be interesting to
  - 1. Estimate radial exotic fractions during conversion process
- 2. Numerically solve 1D Schrödinger equation for exotic atoms ACKNOWLEDGMENTS

We thank you I. Bombaci, A. Gal, D. Logoteta, A. Ramos and I. Vidaña for fruitful comments and suggestions.

#### SELECTED REFERENCES

#### **Neutron stars**

- [1] Glendenning, N. K. Compact stars: Nuclear physics, particle physics and general relativity, 2012.
- [2] Haensel P. et al. Neutron stars 1: Equation of state and structure, 2007.

#### Atoms in extreme magnetic fields

- [3] Meszaros P., High Energy Radiation from Magnetized Neutron Stars , 1992
- [4] Ruder H. et al., Atoms in Strong Magnetic Fields, 1994
- [5] Canuto V. et al., Hydrogen atom in intense magnetic field, Astrophys. Space Science 17, (1972) 277
- [6] Lai D., Matter in strong magnetic fields, Rev. Mod. Phys. 73, (2001)
- [7] Potekhin A.Y., Hydrogen atom moving across a strong magnetic field: analytical approximations, J.Phys.B:At.Mol.Opt.Phys. 31(1998)49

#### NS/QS conversion

- [8] Olinto A.V., On the conversion of NS into strange stars, Phys.Lett.B 192(1987)71
- [9] Bombaci I. et al., Conversion of NS to strange stars as the central engine of GRBs, A.J.530:L69, 2000
- [10] Drago A. et al. The scenario of two families of compact stars. Part 1. Equations of state, mass-radius relations and binary systems, Eur.Phys.J. A,52,40,2016
- [11] Drago A. et al. The scenario of two families of compact stars. Part 2: Transition from hadronic to quark matter and explosive phenomena, Eur.Phys.J. A,52,41, 2016
- [12] Bombaci I. et al., Quark matter nucleation in NS and astrophysical implications, Eur.Phys.J. A, 52,58,2016
- [13] Keränen P. et al., Neutrino emission and mass ejection in Quark Novae, A.J. 618:485 2005

**Backup slides** 

#### QUARK GLUON PLASMA



# **NEUTRON STARS**



## MASSES

Classification by the **maximum mass**  $M_{max}$  that the EOS can sustain:

- Soft EOS (low central density)  $\rightarrow M_{max} \sim 1.5 1.7 M_{\odot}$
- Stiff EOS (high central density)  $\rightarrow M_{max} \sim 2.4 2.5 M_{\odot}$

#### **Recent observations:**

PSR J1614-2230:  $M = 1.97 \pm 0.04 M_{\odot}$ 

PSR J0348-0432:  $M = 2.01 \pm 0.04 M_{\odot}$ 

seem to **rule out** most **soft EOS** and to limit the presence of quark matter in the NS core.



# PARTICLES IN NEUTRON STARS

#### Not only neutrons!



Distribution of particles vs density of matter

Distribution of particles vs radius

Nuclear interactions (NN,YN,YY,NNN,NNY,NYY&YYY) are crucial and well studied in the core <sup>[1,2]</sup>. Any EM interaction among these particles?

# **NEUTRON STAR MAGNETIC FIELD**



- Conservation of magnetic flux during gravitational collapse of iron core
- Electric currents flowing in the highly conductive NS interior
- Spontaneous transition to a ferromagnetic state due to nuclear interactions

**Extremely high** compared to other natural or laboratory fields (pulsed max in lab  $\sim 2.8 \times 10^7 G$ ).

#### ENERGY LEVELS CORRESPONDENCE



# **POSSIBLE FUTURE STUDIES**

• Search of these lines in available datasets



EXO07482676 spectrum from XMM-Newton

CAS A C spectrum from Chandra X

- Estimate radial exotic fractions during conversion process (taking possibly into account also particles lifetimes)
- Numerically solve Schrödinger equation for exotic atoms
- Hyperfine interaction for cylindrical atoms
- Recent new missions as NICER, LOFT as source of new data

#### HYPERFINE SPLITTING

Evaluation of the hyperfine constant for cylindrical atoms:

$$a_J = 2 \, \mu_B \gamma_I \hbar rac{l(l+1)}{j(j+1)} < r^{-3} >_{l \neq 0}$$

**Expectation value** of  $< r^{-3} >$  on the 1D states.

• Traditional atoms:

$$< r^{-3} > = \frac{1}{l(l+1)(l+\frac{1}{2})} \left(\frac{Z}{n a_0}\right)^3$$

• Cylindrical atoms (tightly bound states):

$$< r^{-3} > = \left[ \frac{\sqrt{\lambda_m^2} \gamma^m}{\Gamma(m+1)} l_1 l_2 \right] \frac{2}{\sqrt{\pi}} \left( \frac{b}{2} \right)^{3/2} \left( \frac{Z}{a_0} \right)^3$$

with  $\lambda_m$  obtained with variational methods,  $\gamma = \frac{1}{2\rho_0^2}$ ,  $I_1$  and  $I_2$  integrals on the radial and longitudinal part of the wavefunction. In principle, each level becomes a **doublet**.