Low energy interaction studies of negative kaons in light nuclear targets by AMADEUS

International conference on exotic atoms and related topics – EXA 2017 Wien, Austria, 11- 15 September 2017

12

10

9

8

Kristian Piscicchia*

Laboratori Nazionali di Frascati (INFN) Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi

kristian.piscicchia@lnf.infn.it

Low-energy QCD in the u-d-s sector

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B)$$

- Chiral perturbation theory: interacting systems of N-G bosons (pions, kaons) coupled to baryons works well for $\pi\pi$, π N, K⁺N ... NOT for K⁻N !!
- $K^- = (s\bar{u})$ strangeness = -1, $K^+ = (\bar{u}s)$ strangeness = +1

strange baryons stable respect to strong interaction all have s = -1

 the sub-threshold region is dominated by resonances → complex multichannel dynamics
 Λ(1405) just below KN threshold (1432 MeV)

Possible solutions:

- Non-perturbative Coupled Channels approach: Chiral Unitary SU(3) Dynamics
- phenomenological KN and NN potentials

 $\Lambda(1405)$ is located slightly below the KN threshold (1432 MeV)

Three quark model picture difficulties to reproduce the $\Lambda(1405)$:

- According to its negative parity, one of the quarks has to be excited to l = 1
- nucleon sector, we find the N(1535) \rightarrow the expected mass of the Λ^* is around 1700 MeV
- too big energy splitting observed between the $\Lambda(1405)$ and the $\Lambda(1520)$ interpreted as the spin-orbit partner ($J^p = 3/2^{-}$).
- pentaquark (4q + qbar in *l* = 0), but also predicts other, unobserved, excited baryons,

R. Dalitz and collaborators first suggested to interpret $\Lambda(1405)$ as an KN quasibound state.

R.H. Dalitz, T.C. Wong and G. Rajasekaran, Phys. Rev. 153 (1967) 1617.

BUBBLE CHAMBER search of the $\Lambda(1405)$:

- O. Braun et al. Nucl. Phys. B129 (1977) 1

K- induced reactions on d $\rightarrow \Sigma^{-}\pi^{+}n$ the resonance is found & 1420 MeV

- D. W. Thomas et al., Nucl. Phys. B56 (1973) 15 pion induced reaction π - p \rightarrow K+ $\pi \Sigma$ the resonance is found & 1405 MeV

- R. J. Hemingway, Nucl. Phys. B253 (1985) 742 $K^-p \rightarrow \pi^-\Sigma^+(1660) \rightarrow \pi^-(\pi^+\Lambda(1405)) \rightarrow \pi^-\pi^+(\pi\Sigma) \& 4.2 \text{ GeV}$ analysed by Dalitz and Deloff $M = 1406.5 \pm 4.0 \text{ MeV}, \ \Gamma = 50 \pm 2\text{MeV}$

- HADES coll. Phys. Rev. C 87, 025201 (2013)

 $pp \rightarrow p K^+ \pi \Sigma$ the resonance is found & 1390 MeV

THE "LINE-SHAPE" OF THE Λ(1405) DEPENDS ON THE OBSERVED CHANNEL !!

$$\frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} + \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$
$$\frac{d\sigma(\Sigma^{+}\pi^{-})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} - \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$
$$\frac{d\sigma(\Sigma^{0}\pi^{0})}{dM} \propto \frac{1}{3} |T^{0}|^{2}$$

THE "LINE-SHAPE" OF THE Λ(1405) DEPENDS ON THE OBSERVED CHANNEL !!

$$\frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} + \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$

$$\frac{d\sigma(\Sigma^{+}\pi^{-})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} - \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$

$$\frac{d\sigma(\Sigma^{0}\pi^{0})}{dM} \propto \frac{1}{3} |T^{0}|^{2}$$

IS DIFFERENT IN $\Sigma^+ \pi^- VS \Sigma^- \pi^+$

DUE TO ISOSPIN INTERFERENCE

THE "LINE-SHAPE" OF THE Λ(1405) DEPENDS ON THE OBSERVED CHANNEL !!

$$\frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} + \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$
IS DIFFERENT IN $\Sigma^{+}\pi^{-}$ VS $\Sigma^{-}\pi^{+}$

$$\frac{d\sigma(\Sigma^{+}\pi^{-})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} - \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$
DUE TO ISOSPIN INTERFERENCE
$$\frac{d\sigma(\Sigma^{0}\pi^{0})}{dM} \propto \frac{1}{3} |T^{0}|^{2}$$

THE CLEANEST SIGNATURE OF THE $\Lambda(1405)$ IS GIVEN BY THE NEUTRAL CHANNEL:

- is free from isospin interference
- is purely I = 0, no $\Sigma(1385)$ contamination.

$\Lambda(1405)$.. the golden channel

Crystall Ball: K-p $\rightarrow \Sigma^0 \pi^0 \pi^0$ for kaon momentum in the range (514-750 MeV/c). S. Prakhov et al. Phys Rev. C70 (2004) 03465 (interpreted by Magas et al. PRL 95, 052301 (2005))

COSY julich: $pp \rightarrow pK^+ \Sigma^0 \pi^0$

(I. Zychor et al., Phys. Lett. B 660 (2008) 167)

CLAS: $\gamma p \rightarrow K^+ \Sigma \pi$

AIP Conf.Proc. 1441 (2012) 296-298

Fig. 4. a) Missing-mass $MM(p_{Fd}K^+)$ distribution for the $pp \to pK^+p\pi^-X^0$ reaction for events with $M(p_{Sd}\pi^-) \approx m(\Lambda)$ and $MM(pK^+p\pi^-) > 190 \,\mathrm{MeV/c^2}$. Exper-

$\Lambda(1405)$.. the golden channel

Fig. 4. a) Missing-mass $MM(p_{Fd}K^+)$ distribution for the $pp \to pK^+p\pi^-X^0$ reaction for events with $M(p_{Sd}\pi^-) \approx m(\Lambda)$ and $MM(pK^+p\pi^-) > 190 \,\mathrm{MeV/c^2}$. Exper-

• Chiral unitary models: $\Lambda(1405)$ is an I = 0 quasibound state emerging from the coupling between the KN and the $\Sigma\pi$ channels. Two poles in the neighborhood of the $\Lambda(1405)$:

Chiral dynamics predicts significantly weaker attraction than AY (local, energy independent) potential in far-subthreshold region

Two main **biases**:

- the kinematical energy threshold 1412 MeV
 (M_K + M_p |BE_p|) the high pole energy region is closed,
- The shape and the amplitude of the NON-RESONANT $\Sigma \pi$ production below KbarN threshold is unknown.

- $\Lambda(1405)$ is observed in the $\Sigma^0 \pi^0$ decay channel (pure isospin 0),
- K- is absorbed in-flight on a bound proton with $p_{K} \sim 100$ MeV, $\Sigma \pi$ invariant mass gain of ~ 10 MeV to open an energy window to the high mass pole.
- Knowledge of the $\Sigma\pi$ NON-RESONANT production amplitude.

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

AMADEUS & DAΦNE

DAΦNE

- double ring e⁺e⁻ collider working at C.M. energy of φ, producing ≈ 1000 φ /s
 φ → K⁺K⁻ (BR = (49.2 ± 0.6)%)
 low momentum Kaons
 - ≈ 127 Mev/c
 - **back to back** K⁺K⁻ topology

AMADEUS step 0 \rightarrow KLOE 2004-2005 dataset analysis ($\mathscr{L} = 1.74 \text{ pb}^{-1}$)

KLOE

• Cilindrical drift chamber with a 4π geometry and electromagnetic calorimeter

96% acceptance

- optimized in the energy range of all **charged particles** involved
- good performance in detecting photons and neutrons checked by kloNe group [M. Anelli et al., Nucl Inst. Meth. A 581, 368 (2007)]

K⁻ absorption on light nuclei

At-rest VS in-flight K⁻ captures

AT-REST K⁻ absorbed from atomic orbit (p_K~ 0 MeV)

<u>IN-FLIGHT</u> (p_к~100MeV)

The scientific goal of AMADEUS

Low energy QCD in strangeness sector is still waiting for experimental conclusive constrains on:

1) **K-N potential** \rightarrow how deep can an antikaon be bound in a nucleus?

- U_{KN} strongly affects the position of the $\Lambda(1405)$ state \rightarrow we investigate it through $(\Sigma - \pi)^0$ decay --- $\Upsilon \pi$ CORRELATION

- if U_{KN} is strongly attractive then K⁻ NN bound states should appear \rightarrow we investigate through (Λ/Σ -N) decay --- Y N CORRELATION
- 2) Y-N potential → extremely poor experimental information from scattering data
 - U_{yN} determines the strength of the final state YN (elastic & inelastic) scattering in nuclear environment \rightarrow could be tested by YN CORRELATION

The scientific goal of AMADEUS

Low energy QCD in strangeness sector is still waiting for experimental conclusive constrains on:

1) **K-N potential** \rightarrow how deep can an antikaon be bound in a nucleus?

- U_{KN} strongly affects the position of the $\Lambda(1405)$ state \rightarrow we investigate it through $(\Sigma - \pi)^0$ decay --- $\Upsilon \pi$ CORRELATION

- if U_{KN} is strongly attractive then K⁻ NN bound states should appear \rightarrow we investigate through (Λ/Σ -N) decay --- Y N CORRELATION
- 2) Y-N potential → extremely poor experimental information from scattering data
 - U_{yN} determines the strength of the final state YN (elastic & inelastic) scattering in nuclear environment \rightarrow could be tested by Y N CORRELATION

K⁻ - N single nucleon absorption the case of the Λ(1405)

$\Lambda(1405)$ case

FIG. 4: Theoretical $(\pi^0 \Sigma^0)$ invariant mass distribution for an initial kaon lab momenta of 687 MeV. The non-symmetrized distribution also contains the factor 1/2 in the cross section.

Resonant VS non-resonant

 $K^{-} N \rightarrow (Y^{*} ?) \rightarrow Y \pi$ in medium, how much comes from resonance ?

Non resonant transition amplitude:

 Never measured before below threshold (33 MeV below threshold):

$$E_{Kn} = -|B_n| - \frac{p_3^2}{2\mu_{\pi,\Lambda,3He}},$$

- few, old theoretical calculations (Nucl. Phys. B179 (1981) 33-48)

Resonant VS non-resonant

Investigated using: $\mathbf{K}^{-} \mathbf{n}^{-} \rightarrow \Lambda \pi^{-}$ direct formation in ⁴He

the goal is to measure $|f^{N-R}_{\Lambda\pi}(I=1)|$ to get information on $|f^{N-R}_{\Sigma\pi}(I=0)|$

$K^{-4}He \rightarrow \Lambda p^{-3}He$ resonant and non-resonant processes Nucl. Phys. A954 (2016) 75-93

Δ

³He

Δ

d/pp

N

π-

Ľ.

a.

Theoretical shapes for :

total $\Lambda\pi^{-}$ momentum spectra for the resonant (Σ^{*}) and non-resonant (I = 1) processes were calculated, for both S-state and P-state K⁻ capture at-rest and in-flight. Corrections to the amplitudes due to Λ/π final state interactions were estimated.

Collaboration with S. Wycech

How to extract the $K^- n \rightarrow \Lambda \pi^-$ non resonant transition amplitude

simultaneous fit $(p_{\Lambda\pi} - m_{\Lambda\pi} - \cos(\theta_{\Lambda\pi}))$ with signal and background processes :

- non resonant K^- capture at-rest from S states in ⁴He
- resonant K^- capture at-rest from S states in ⁴He
- non resonant K^- capture in-flight in ⁴He
- resonant K^- capture in-flight in ⁴He
- primary $\Sigma \pi^-$ production followed by the $\Sigma N \to \Lambda N'$ conversion process
- K^- capture processes in ¹²C giving rise to $\Lambda \pi^-$ in the final state

In order to extract:

NR-ar/RES-ar & NR-if/RES-if

Results for the $K^- n \rightarrow \Lambda \pi^-$ non resonant transition amplitude

reinninar

Channels	$\operatorname{Ratio}/\operatorname{Amplitude}$	$\sigma_{\rm stat}$	$\sigma_{\rm syst}$
RES-ar/NR-ar	0.39	± 0.04	$^{+0.18}_{-0.07}$
RES-if/NR-if	0.23	± 0.03	$^{+0.23}_{-0.22}$
NR-ar	12.00~%	\pm 1.66 $\%$	$^{+1.96}_{-2.77}~\%$
NR-if	19.24~%	\pm 4,38 $\%$	$^{+5.90}_{-3.33}~\%$
$\Sigma \to \Lambda$ conv.	2.16~%	\pm 0.30 $\%$	$^{+1.62}_{-0.83}$ %
$K^{-12}C$ capture	57.00 %	\pm 1.23 $\%$	$^{+2.21}_{-3.19}~\%$

TABLE I. Resonant to non-resonant ratios and amplitude of the different channels extracted from the fit of the $\Lambda\pi^-$ sample. The statistical and systematic errors are also shown. See text for details.

> extracted: NR-ar/RES-ar & NR-if/RES-if

Simultaneous momentum – angle – mass fit

Counts / 9 MeV

Comparison

fit Light band sys err. Dark band stat. Err.

 $m_{\Lambda\pi}$

Outcome of the measurement

From the well known Σ^* transition probability:

From the well known
$$\Sigma^*$$
 transition probability:

$$\frac{NR - ar}{RES - ar} = \frac{\int_0^{pmax} P_{ar}^{nr}(p_{\Lambda\pi}) dp_{\Lambda\pi}}{\int_0^{pmax} P_{ar}^{res}(p_{\Lambda\pi}) dp_{\Lambda\pi}} = I \qquad Product P$$

compatible with K⁻ p $\rightarrow \Lambda \pi^0$ scattering above threshold

J. K. Kim, Columbia University Report, Nevis 149 (1966),

J. K. Kim, Phys Rev Lett, 19 (1977) 1074:

	•			
E = -33 MeV	$p_{lab} = 120 \ {\rm MeV}$	$160~{\rm MeV}$	$200 { m MeV}$	$245~{\rm MeV}$
$0.334 \pm 0.018 \mathrm{stat}^{+0.034}_{-0.058} \mathrm{syst}$	0.33(11)	0.29(10)	0.24(6)	0.28(2)

Outcome of the measurement

From the well known Σ^* transition probability:

From the well known
$$\Sigma^*$$
 transition probability:

$$\frac{NR - ar}{RES - ar} = \frac{\int_0^{pmax} P_{ar}^{nr}(p_{\Lambda\pi}) dp_{\Lambda\pi}}{\int_0^{pmax} P_{ar}^{res}(p_{\Lambda\pi}) dp_{\Lambda\pi}} = P_{ar}^{res}(p_{\Lambda\pi}) dp_{\Lambda\pi}$$

$$\longrightarrow |f_{ar}^s| = (0.334 \pm 0.018 \operatorname{stat}_{-0.058}^{+0.034} \operatorname{syst}) \operatorname{fm}.$$

$$= |f_{ar}^s|^2 \cdot 8,94 \cdot 10^5 \text{MeV}^2$$

Good agreement with

chiral calculation:

- Y. Ikeda, T. Hyodo and W. Weise,
- Nucl. Phys. A 881 (2012) 98.

FIG. 1: Energy dependence of real (left) and imaginary (right) parts of free-space K^-p (top) and $K^{-}n$ (bottom) amplitudes in considered chiral models (see text for details). This vertical lines mark threshold energies.

Low momentum p_{Σ^+} structure in $\Sigma^+\pi^-$ formation

Fig. 5. Momentum distributions of sigmas from the ${}^{6}Li(K_{stop}^{-}, \pi^{\pm}\Sigma^{\mp})A'$ reactions. The grey-filled histograms are the measured distributions. The distributions of Monte-Carlo generated sigmas are depicted by full dots, and with open diagrams are represented the M-C generated sigmas being reconstructed by FINUDA.

FINUDA coll. M. Agnello et al., Phys. Lett. B704 (2011) 474. $K^{-6}Li \rightarrow \Sigma^{+}\pi^{-}A'$

Low momentum p_{Σ^+} structure in $\Sigma^+\pi^-$ formation

K. Piscicchia et al., EPJ Web Conf. 137 (2017) 09005.

 $K^{-9}Be \rightarrow \Sigma^{+}\pi^{-} + 2\alpha$

 $K^{-12}C \rightarrow \Sigma^+\pi^- A'$

no structure at low momentum

structure at low momentum amounts some % of the total yield also in thiner targets

(not explained by energy loss)

Hypothesis: Σ⁺ trapped in a Gamov state, interplay of the attractive nuclear potential & repulsive Coulomb barrier

S. Wycech, K. Piscicchia, EPJ Web. Conf. 130 (2016) 02011

R. Del Grande, K. Piscicchia and S. Wycech, Formation of $\Sigma^+\pi^-$ pairs in nuclear captures of K\$^-\$ mesons, accepted in Acta. Phys. Polon B

S. Wycech, K. Piscicchia, On Gamov states of Σ⁺ hyperons, accepted in Acta. Phys. Polon B

Gamov state formation of a Σ^+ **in light nuclei?**

... work in progress

1330

100

150

200

250

300

450 Ρ_{Σ+} (MeV)

Gamov peak following in-flight capture

 $K^{-12}C \rightarrow \Sigma^+\pi^{-11}Be$

about 3% of the large peak

Breit – Wigner - $(E, \Gamma) = (1405,40); (1410,40);$

(1420,40)

Position p_{Σ+} = 15 MeV/c peculiar structure due to the limitation of the phase space

K⁻ - multiN absorption and search for bound states

How deep can an antikaon be bound in a nucleus?

Possible Bound States:

$$\begin{array}{ll} (K^{-} pp) \to \Lambda p & (K^{-} ppn) \to \Lambda d \\ \to \Sigma^{0} p & \to \Sigma^{0} d \end{array}$$

predicted due to the strong KN interaction in the I=0 channel. [Wycech (1986) - Akaishi & Yamazaki (2002)]

K⁻pp bound state

....at the end of 2015

	BE (MeV)	Γ (MeV)	Reference
Dote, Hyodo, Weise	17-23	40-70	Phys.Rev.C79 (2009) 014003
Akaishi, Yamazaki	48	61	Phys.Rev.C65 (2002) 044005
Barnea, Gal, Liverts	16	41	Phys.Lett.B712 (2012) 132-137
Ikeda, Sato	60-95	45-80	Phys.Rev.C76 (2007) 035203
Ikeda, Kamano, Sato	9-16	34-46	Prog.Theor.Phys. (2010) 124(3): 533
Shevchenko, Gal, Mares	55 - 70	90-110	Phys.Rev.Lett.98 (2007) 082301
Revai, Shevchenko	32	49	Phys.Rev.C90 (2014) no.3, 034004
Maeda, Akaishi, Yamazaki	51.5	61	Proc.Jpn.Acad.B 89, (2013) 418
Bicudo	14.2-53	13.8 - 28.3	Phys.Rev.D76 (2007) 031502
Bayar, Oset	15 - 30	75-80	Nucl.Phys.A914 (2013) 349
Wycech, Green	40-80	40-85	Phys.Rev.C79 (2009) 014001

Experiments reporting DBKNS			
KEK-PS E549	T. Suzuki at al. MPLA23, 2520-2523 (2008)		
FINUDA	M. Agnello et al. PRL94, 212303 (2005) Extraction of a signa		
DISTO	T. Yamazaki et al. PRL104 (2010)	Extraction of a signal	
OBELIX	G. Bendiscioli et al. NPA789, 222 (2007)	Extraction of a signal	
HADES	G. Agakishiev et al. PLB742, 242-248 (2015)	Upper limit	
LEPS/SPring-8	A.O. Tokiyasu et al. PLB728, 616-621 (2014)	Upper limit	
J-PARC E15	T. Hashimoto et al. PTEP, 061D01 (2015)	Upper limit	
J-PARC E27	Y. Ichikawa et al. PTEP, 021D01 (2015)	Extraction of a signal	

How deep can an antikaon be bound in a nucleus?

interpreted in

T. Sekihara, E. Oset, A. Ramos, Prog. Theor. Exp. Phys (2016) (12): 123D03

[from the talk of T. Nagae at HYP2015, Sep. 10, 2015]

J-PARC E15

$K^{-} + {}^{3}He \rightarrow \Lambda + p + n$

Invariant mass spectroscopy

Σ0 p correlated production, goals of this analysis

K- Absorption

 Pin down the contribution of the process:

$$K^- + NN \to \Sigma^0 + p$$

with respect to processes as: $K^- + NN \rightarrow \Sigma^0 + p \rightarrow p" + \Sigma^0" (FSI)$ $K^- + NNN \rightarrow \Sigma^0 + p + X$ $K^- + NNNN \rightarrow \Sigma^0 + p + X$ **Kaonic Bound States**

$$ppK^- \to \Sigma^0 + p$$

Yield Extraction and Significance

From the contributions to the fit, the yields are extracted for K- stop

Absorption results

	yield / $K_{stop}^{-} \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.127	± 0.019	$+0.004 \\ -0.008$
2NA-FSI	0.272	± 0.028	$^{+0.022}_{-0.023}$
Tot 2NA	0.376	± 0.033	$^{+0.023}_{-0.032}$
3NA	0.274	± 0.069	$+0.044 \\ -0.021$
Tot 3body	0.546	± 0.074	$+0.048 \\ -0.033$
4NA + bkg.	0.773	± 0.053	$^{+0.025}_{-0.076}$

O. Vazquez Doce et al., Physics Letters B 758 (2016) 134

...is there room for the signal of a **ppK- bound state**?

Evaluation of the significance of the ppK- **signal** For B.E. = 45 MeV/c2, Width = 30 MeV/c2

 $Yield/K^{-}_{stop} = (0.044 \pm 0.009 stat^{+0.004}_{-0.005} syst) \cdot 10^{-2}$

F-test to evaluate the addition of an extra parameter to the fit:

Significance of "signal" hypothesis w.r.t "Null-Hypothesis" (no bound state)

$K^{-4}He \rightarrow \Lambda t$

4NA cross section and yield

At available data

Available data:

• in Helium :

- bubble chamber experiment [M.Roosen, J.H. Wickens, II Nuovo Cimento 66, (1981), 101] K⁻ stopped in liquid helium, Λ dn/t search. 3 events compatible with the Λ t kinematics were found

 $BR(K^{-4}He \rightarrow \Lambda t) = (3 \pm 2) \times 10^{-4}/K_{stop}$

global, no 4NA

Solid targets

- FINUDA [Phys.Lett. B669 (2008) 229] (40 events in different solid targets)

∧t available data

FINUDA presented [Phys.Lett.B (2008) 229]:

- a study of Λ vs t momentum correlation and an opening angle distribution
- 40 events collected and added together coming from different targets (^{6,7}Li, ⁹Be)

At correlation studies in ⁴He from the DC gas : contributing processes

Tritons are spectators, **too low momentum**: p_t ~ Fermi momentum lower then the calorimeter threshold (p_t ~ 500 MeV/c) <u>checked by MC simulations</u>

4NA processes – K⁻ absorbed by the **α particle**:

 $\label{eq:K-4} \begin{array}{lll} K^{-4}He \ \rightarrow \ \Lambda t \\ \\ K^{-4}He \ \rightarrow \ \Sigma^0 t \ , \ \ \Sigma^0 \ \ \rightarrow \ \Lambda y \end{array}$

conversion is suppressed by the Σ⁰- t Back to back topology!

Mass calculated by TOF (MeV/c²)

MC simulations: efficiency & resolution

mass threshold at-rest

 M_{At} invariant mass resolution = 2.2 MeV/c²

overall detection + reconstruction efficiency for 4NA direct At production :

 $\epsilon_{4NA,ar,\Lambda t} = 0.0493 \pm 0.0006$; $\epsilon_{4NA,if,\Lambda t} = 0.0578 \pm 0.0006$, at-rest in-flight

$K-^{4}He \rightarrow \Lambda t$ 4NA cross section

Contribution to the spectra	Parameter value
K^{-4} He $\rightarrow \Lambda t$ at rest	0.01 ± 0.01
K^{-4} He $\rightarrow \Lambda t$ in-flight	0.09 ± 0.02
K^{-4} He $\rightarrow \Sigma^0 t$ in-flight	0.05 ± 0.03
$K^{-12}C \rightarrow \Lambda t$ experimental distribution from the carbon DC wall	0.85 ± 0.06
$\chi^2 \ / \ {f ndf}$	0.654

Total number of events = 136

4NA K^{-4} He $\rightarrow \Lambda t$ at rest $\rightarrow 1 \pm 1$ events 4NA K^{-4} He $\rightarrow \Lambda t$ in flight $\rightarrow 12 \pm 3$ events

 $BR(K^{-4}He(4NA) \rightarrow \Lambda t) < 1.3 \times 10^{-4} / K_{stop}$

 σ (100 ± 19 MeV/c) (K⁻⁴He(4NA) → Λt) = = (0.42 ± 0.13(stat) ^{+0.01}_{-0.02} (syst)) mb

perspectives:

- Sub-threshold K- n $\rightarrow \Lambda \pi^{-}$ non resonant amplitude Nucl. Phys. A954 (2016) 75-93

 $|f_{ar}^{s}| = (0.334 \pm 0.018 \operatorname{stat}_{-0.058}^{+0.034} \operatorname{syst}) \operatorname{fm}.$

experimental paper finalised

next step extract the same info in I = 0 to interpret the $\Sigma^0 \pi^0$ spectra

- K- multiN absoption yields in Σ^0 p Physics Letters B 758 (2016) 134

	yield / $K_{stop}^{-} \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.127	± 0.019	$+0.004 \\ -0.008$

Same analysis is ongoing in Λp (R. Del Grande PhD thesis)

- interpretation of the p_{Σ^+} spectra
- K- ⁴He \rightarrow At 4NA cross section $\sigma(100 \pm 19 \text{ MeV/c}) (\text{K}^{-4}\text{He}(4\text{NA}) \rightarrow \text{At}) = (0.42 \pm 0.13(\text{stat})^{+0.01}_{-0.02} (\text{syst})) \text{ mb } \text{paper in preparation}$
- feasibility study of the Σ⁰ N/NN *two* and *three body forces* measurement from K-absoption in ⁴He

 \mathbf{K}^{-}

for the investigation of the

 Σ^{0} -N & Σ^{0} -(NN) two and three body interaction

No experimental information on Σ^0 -N/NN interaction

Figure 2: "Total" cross section σ (as defined in Eq. (24)) as a function of p_{lab} . The experimental cross sections are taken from Refs. [52] (filled circles), [53] (open squares), [65] (open circles), and [66] (filled squares) ($\Lambda p \rightarrow \Lambda p$), from [54] ($\Sigma^- p \rightarrow \Lambda n, \Sigma^- p \rightarrow \Sigma^0 n$) and from [55] ($\Sigma^- p \rightarrow \Sigma^- p, \Sigma^+ p \rightarrow \Sigma^+ p$). The red/dark band shows the chiral EFT results to NLO for variations of the cutoff in the range $\Lambda = 500, \dots, 650$ MeV, while the green/light band are results to LO for $\Lambda = 550, \dots, 700$ MeV. The dashed curve is the result of the Jülich '04 meson-exchange potential [36].

Y-N/NN interaction essential impact on the case of NEUTRON STARS

ECT*, Trento (Italy), 27 – 31 October 2014 **Strangeness in Neutron Stars Ignazio Bombaci** Dipartimento di Fisica "E. Fermi", Università di Pisa INFN Sezione di Pisa

Sezione di una stella di neutroni 4.3x1011 a/cm3 8 a/cm 0.5x10 a/cm3 2.7x10¹⁵ g/cm3 nocciolo di materia nuclear crosta intern crosta estern (nuclei,e-) nocciolo di materie guscio di materia nucleare crost guscio di materia nocciolo di materia strana [*u, d, s, e-*] guscio di materia nucleare (u, d, s, e-) I. Bombaci, A. Drago, INFN Notizie, n. 13, 15 (2003)

"Neutron

Nucleon Stars

Hyperon Stars

Hybrid Stars

Strange Stars

Microscopic approach to hyperonic matter EOS

input

2BF: nucleon-nucleon (NN), nucleon-hyperon (NY), hyperon-hyperon (YY) e.g. Nijmegen, Julich models

3BF: NNN, NNY, NYY, YYY

Hyperonic sector: experimental data

1. YN scattering (very few data)

2. Hypernuclei

Involved reactions:

$3NA - (K ppn) + n \rightarrow \Sigma^0 d + n$

- The Σ^0 identification (with respect to Λ) enables to avoid the dominant internal conversion background. Moreover there is presently no available Σ^0 -N interacion data.

- 4He good target no
nuclear fragmentation can
follow the 3NA
primary process.

Comparison with available data

 $3NA - (K ppn) + n \rightarrow \Sigma^0 d + n$

Data correspond to K- captures in ¹²C solid target.

The most energetic part of the $m_{\Sigma 0d}$ invariant mass spectrum, correlated with high $p_{\Sigma 0}$ and p_d momenta, corresponds to the 3NA - (K-ppn) process

The Σ^0 d statistics corresponding to the sample of K- captures in the gas (4He) from the KLOE DC is too small

A dedicated measurement with pure 4He target is mandatory!!

<u>3NA</u>

 $(K ppn) + n \rightarrow \Sigma^0 d + n$

without FSI

- Corresponds to the highest part of the invariant mass spectrum
- the blue region is populated by: free 3NA + 3NA followed FSI.
 - Lower energies (below 3220 MeV) involve 2NA and complex FSI processes with fragmentation of the residual.

<u>3NA</u>

 $(K ppn) + n \rightarrow \Sigma^0 d + n$

without FSI

Corresponds to the highest part of the Σ^0 momentum spectrum.

The narrow Σ^0 momentum distribution will enable to Σ^0 -NN cross section at 550 \pm 50 MeV/c.

3NA - (K-ppn) + n $\rightarrow \Sigma 0 d + n$ signature:

- Highest $\Sigma 0$ - d angular correlation

- low Fermi momentum neutron

Using the same data set ...

The compeeting process

2NA - (K-pn) + d $\rightarrow \Sigma^0 n + d$

can be used to extract

the complementary

Information:

TWO simulatneous fits (Σ^0 n & Σ^0 d) of the same data set

with the constraint

Background reactions:

1NA - (K-p) + pnn $\rightarrow \Sigma 0 \pi 0$ n d (K-n) + ppn $\rightarrow \Sigma 0 \pi$ - p d

- low energy (took away by the pion) not correlated $\Sigma 0$ d pairs. It is easy to be disentangled (similar to the $\Sigma 0$ p analysis).

Thank you

Gamov state formation of a Σ^+ **in light nuclei?**

K. Piscicchia et al., EPJ Web Conf. 137 (2017) 09005.

no structure at low momentum

structure at low momentum

can not be explained by energy loss, the target is much thiner

Gamov state formation of a Σ^+ **in light nuclei?**

K. Piscicchia et al., EPJ Web Conf. 137 (2017) 09005.

Hypothesis: Σ⁺ trapped in a Gamov state, interplay of the attractive nuclear potential & repulsive Coulomb barrier

See: S. Wycech, K. Piscicchia, EPJ Web. Conf. 130 (2016) 02011

R. Del Grande, K. Piscicchia and S. Wycech, Formation of Σ⁺π[−] pairs in nuclear captures of K\$^-\$ mesons, accepted in Acta. Phys. Polon B

S. Wycech, K. Piscicchia, On Gamov states of Σ^+ hyperons, accepted in Acta. Phys. Polon B