Results on b hadron properties in CMS: b hadron lifetime measurements at $\sqrt{s} = 8$ TeV

EXA 2017, Vienna

Thomas Madlener*

on behalf of the CMS collaboration

HEPHY Vienna

Sept. 13, 2017

*supported by Austrian Science Fund (FWF): P28411-N36
Lifetime measurements of b hadrons

- Precise lifetime measurements play important role in study of nonperturbative aspects of QCD
- Phenomenological description by Heavy Quark Expansion (HQE) model
 - Based on perturbative expansion of interaction of a single heavy quark with light quarks
 - Provides accurate estimates of the ratio of lifetimes for hadrons containing a heavy quark
- Some discrepancies in experimental measurements in $\tau_{B_c^+}$
• Silicon pixel and strip detector modules
• Measurement of charged particles without particle identification
• Transverse impact parameter resolution $\sim 25 - 90 \mu m$

• Drift tubes, cathode strip chambers and resistive-plate chambers
• Used in first-level, hardware based trigger
• Segments are matched to charged tracks to identify muons
• High-level trigger has access to full event information
Reconstruction of b hadrons

- Using final states with a J/ψ
 - J/ψ candidates reconstructed by combining oppositely charged muons
- Neutral particle candidates reconstructed by combining oppositely charged tracks with appropriate mass assignments
- Candidate b hadrons reconstructed by combining a J/ψ candidate with tracks or reconstructed neutral particles
 - Fit to a common vertex
 - Reconstructed muons and charged tracks have to satisfy quality requirements
- Production vertex (PV) determined from fitting of reconstructed tracks
- Distance between PV and decay vertex is proper decay length ct

$$ct = cL_{xy} \frac{M}{p_T}$$
Lifetime measurements of b hadrons at $\sqrt{s} = 8$ TeV

Reconstructed in final states with a J/ψ

$$\begin{align*}
B^0 &\rightarrow J/\psi K^* (892)^0 \quad \text{with} \quad K^* (892)^0 \rightarrow K^\pm \pi^\mp \\
&\quad J/\psi K_S^0 \quad \text{with} \quad K_S^0 \rightarrow \pi^+ \pi^- \\
B_s^0 &\rightarrow J/\psi \pi^+ \pi^- \\
&\quad J/\psi \phi (1020) \quad \text{with} \quad \phi (1020) \rightarrow K^+ K^- \\
\Lambda_b^0 &\rightarrow J/\psi \Lambda^0 \quad \text{with} \quad \Lambda^0 \rightarrow p \pi^- \\
B_c^+ &\rightarrow J/\psi \pi^+
\end{align*}$$

• Using 19.7 fb$^{-1}$ of data collected in 2012 from pp collisions at $\sqrt{s} = 8$ TeV
B^0_s measurement

- Decay rate of neutral B^0_q mesons characterized by
 \[\Gamma_q = (\Gamma_L^q + \Gamma_H^q)/2 \quad \text{and} \quad \Delta \Gamma_q = \Gamma_L^q - \Gamma_H^q \]

- B^0 system: $\frac{\Delta \Gamma_d}{\Gamma_d} = (-0.3 \pm 1.5)\%$

- B^0_s system: $\frac{\Delta \Gamma_s}{\Gamma_s} = (12.4 \pm 1.1)\%$

$B^0_s \rightarrow J/\psi \pi^+ \pi^-$:

- $0.9240 < M(\pi^+ \pi^-) < 1.0204$ GeV
 → dominated by $f_0(980)$
 → CP-odd final state
 → $c \tau^{CP-odd}_{B^0_s} \approx 1/\Gamma_H$

$B^0_s \rightarrow J/\psi \phi(1020)$:

- Admixture of one CP-odd and two CP-even states
 → Measurement of effective lifetime $c \tau_{eff}$

- Complementary to weak mixing phase analysis

Sept. 13, 2017

T. Madlener, EXA 2017
Event selection

b hadron requirements:
 • $p_T > 13$ GeV (except for B_S^0)
 • $ct > 0.02$ cm

J/ψ requirements:
 • $p_T > 7.9$ GeV
 • $M_{\mu\mu}$ within 0.15 GeV of world average
 • Vertex χ^2 probability > 0.5 %

Track and muon requirements:
 • Track $p_T > 0.5$ GeV
 • $|\eta(\mu)| < 2.2$

Mass windows for neutral states:

<table>
<thead>
<tr>
<th>state</th>
<th>min/GeV</th>
<th>max/GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*(892)^0$</td>
<td>0.7960</td>
<td>0.9880</td>
</tr>
<tr>
<td>K_S^0</td>
<td>0.4876</td>
<td>0.5076</td>
</tr>
<tr>
<td>$\pi^+\pi^-$</td>
<td>0.9240</td>
<td>1.0204</td>
</tr>
<tr>
<td>$\phi(1020)$</td>
<td>1.0095</td>
<td>1.0295</td>
</tr>
<tr>
<td>Λ^0</td>
<td>1.1096</td>
<td>1.1216</td>
</tr>
</tbody>
</table>
Data modelling and fitting

• Signal decay length distribution

\[T(\text{ct}, \sigma_{\text{ct}} \mid \tau_B) = \left[E(\text{ct} \mid \tau_B) \otimes R(\text{ct}, \sigma_{\text{ct}}) \right] \cdot \mathcal{E}(\text{ct}) \]

\[E(\text{ct} \mid \tau_B) \] – Decay distribution
\[R(\text{ct}, \sigma_{\text{ct}}) \] – Detector resolution
\[\mathcal{E}(\text{ct}) \] – Efficiency

• Signal decay length distribution parameters obtained from three dimensional fit using

 • \(b \) hadron mass
 • \(\text{ct} \)
 • per event \(\text{ct} \) uncertainty \(\sigma_{\text{ct}} \)

• Efficiency correction obtained from fully simulated MC samples as function of \(\text{ct} \)

 Generated distribution of selected events after reconstruction
 Exponential distribution with lifetime used in generation

\[\text{°} \text{sum of two exponentials for } B_s^0 \rightarrow J/\psi \phi(1020) \]
Exemplary fit results and efficiency

\[B_S^0 \rightarrow J/\psi \phi(1020) \]
Results

<table>
<thead>
<tr>
<th>channel</th>
<th>This results/µm</th>
<th>PDG*/µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C\tau_{B^0})</td>
<td>(J/\psi K^*(892)^0)</td>
<td>453.0 ±1.6 ±1.5</td>
</tr>
<tr>
<td></td>
<td>(J/\psi K^0)</td>
<td>457.8 ±2.7 ±2.7</td>
</tr>
<tr>
<td>(C\tau_{B^0_s})</td>
<td>(J/\psi\pi^+\pi^-)</td>
<td>504.3 ±10.5 ±3.7</td>
</tr>
<tr>
<td></td>
<td>(J/\psi\phi(1020))</td>
<td>443.9 ±2.0 ±1.2</td>
</tr>
<tr>
<td>(C\tau_{\Lambda_b^0})</td>
<td>(J/\psi\Lambda)</td>
<td>443.1 ±8.2 ±2.7</td>
</tr>
</tbody>
</table>

All results in good agreement with current world average values

*Chin. Phys. C, **40**, 100001 (2016)

†Taken from HFLAV: arXiv:1612.07233 [hep-ex]
B_c^+ lifetime

- B_c^+ weak decay
 - b quark decays with c quark as spectator or vice versa
 - Annihilation process predicted to contribute up to 10% of decay width

- LHCb measures longer lifetimes than D0 and CDF

<table>
<thead>
<tr>
<th>channel</th>
<th>decay length/µm</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHCb: $B_c^+ \to J/\psi\pi^+$</td>
<td>154.4 ± 3.7</td>
<td>PLB 742 (2015) 29</td>
</tr>
<tr>
<td>LHCb: $B_c^+ \to J/\psi\mu^+\nu_\mu\chi$</td>
<td>152.6 ± 4.3</td>
<td>JHEP 74 (2014) 2839</td>
</tr>
<tr>
<td>CDF: $B_c^+ \to J/\psi e^+\nu_e$</td>
<td>138.8 ± 24.3</td>
<td>PRL 97, 012002</td>
</tr>
<tr>
<td>CDF: $B_c^- \to J/\psi\pi^-$</td>
<td>135.5 ± 16.5</td>
<td>PRD 87, 011101(R)</td>
</tr>
<tr>
<td>D0: $B_c^{±} \to J/\psi\pi^{±}$</td>
<td>134.3 ± 14.9</td>
<td>PRL 102, 092001</td>
</tr>
</tbody>
</table>
B^+_c lifetime measurement

- Use precise knowledge of B^+ lifetime to measure B^+_c lifetime

\[
\frac{N_{B^+_c}(t)}{N_{B^+}(t)} = \mathcal{R}(t) = \frac{[E(t|\tau_{B^+_c}) \otimes R(t)]\mathcal{E}(t)}{[E(t|\tau_{B^+}) \otimes R(t)]\mathcal{E}(t)}
\]

- Ratio not significantly affected by resolution

\[
\rightarrow \mathcal{R}(t) = R_\varepsilon(t) \exp(-\Delta \Gamma t) \quad \text{with} \quad \Delta \Gamma = \Gamma_{B^+_c} - \Gamma_{B^+} = \frac{1}{\tau_{B^+_c}} - \frac{1}{\tau_{B^+}}
\]

- $R_\varepsilon(t)$ - ratio of efficiency functions evaluated from MC simulation absorbing residual resolution effects

- N_{B^+} and $N_{B^+_c}$ obtained from fits to data in different ct bins
\[\Delta \Gamma = 4.12 \pm 0.30 \pm 0.16 \, \text{mm}^{-1}c \]
\[c\tau_{B_c^+} = 162.3 \pm 8.2 \pm 4.7 \pm 0.1(\tau_{B^+}) \, \mu \text{m} \]

Results in agreement with LHCb measurement
Summary

• Lifetime measurements of
 • $B^0 \rightarrow J/\psi K^*(892)^0$
 • $B^0 \rightarrow J/\psi K^0_S$
 • $B^0_S \rightarrow J/\psi \pi^+ \pi^-$
 • $B^0_S \rightarrow J/\psi \phi(1020)$
 • $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$
 • $B^+_c \rightarrow J/\psi \pi^+$

at CMS at $\sqrt{s} = 8$ TeV have been presented

• All measurements are in good agreement with current world average values
• Some measurements are already at the precision level of the current world average
• Measurement of B^+_c lifetime is in agreement with recent LHCb measurements
Supplementary Material
Systematic uncertainties for neutral b hadrons

Common uncertainties:
- Production vertex (PV) selection
- Detector alignment
- ct resolution
- MC finite size
- Efficiency modeling
- Absolute ct accuracy
- Mass modelling
- ct modelling

Channel specific uncertainties:
- $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$
 - B^+ contamination
 - Invariant $\pi^+ \pi^-$ mass window
- $B^0 \rightarrow J/\psi K^*(892)^0$
 - $K^\pm \pi^\mp$ mass assumption for $K^*(892)^0$
- $B_s^0 \rightarrow J/\psi \phi(1020)$
 - ct range
 - S-wave contamination

Combined systematic uncertainty between 1.2 - 3.7 μm for all channels
Detailed systematic uncertainties for neutral b hadrons

<table>
<thead>
<tr>
<th>Source</th>
<th>$B^0 \to J/\psi K^{*0}$</th>
<th>$B^0 \to J/\psi K^0_S$</th>
<th>$B^0_s \to J/\psi \pi^+ \pi^-$</th>
<th>$\Lambda^0_b \to J/\psi \Lambda^0$</th>
<th>$B^0_s \to J/\psi \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV selection</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Detector alignment</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>ct resolution</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MC finite size</td>
<td>1.1</td>
<td>2.4</td>
<td>2.0</td>
<td>2.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Efficiency modelling</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Absolute ct accuracy</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Mass modelling</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>ct modelling</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>B^+ contamination</td>
<td>–</td>
<td>–</td>
<td>2.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mass window of the $\pi^+ \pi^-$</td>
<td>–</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$K^\mp \pi^\mp$ mass assumption</td>
<td>0.3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
</tr>
<tr>
<td>ct range</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
</tr>
<tr>
<td>S-wave contamination</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>1.5</td>
<td>2.7</td>
<td>3.7</td>
<td>2.7</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Systematic uncertainties in μm

Sept. 13, 2017
T. Madlener, EXA 2017
Systematic uncertainties for B_c^+

- Production vertex (PV) selection
- Fit model
- Binning definition
- Simulated sample sizes
- Detector alignment

<table>
<thead>
<tr>
<th>Source</th>
<th>$\sigma_{\Delta \Gamma}$ [c/mm]</th>
<th>σ_{c_B} [\mu m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV choice</td>
<td>0.07</td>
<td>2.0</td>
</tr>
<tr>
<td>Fit model</td>
<td>0.12</td>
<td>3.7</td>
</tr>
<tr>
<td>ct binning</td>
<td>0.06</td>
<td>1.6</td>
</tr>
<tr>
<td>Simulation size</td>
<td>0.04</td>
<td>1.3</td>
</tr>
<tr>
<td>Misalignment</td>
<td>0.03</td>
<td>0.6</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>0.16</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Fit results

[Graphs showing fit results for CMS Preliminary 19.7 fb\(^{-1}\) (8 TeV) with events distribution and data-background fit comparison for different regions.]

Sept. 13, 2017 T. Madlener, EXA 2017
Fit results

CMS Preliminary 19.7 fb⁻¹ (8 TeV)

- **M(J/ψ π⁺π⁻) [GeV]**
 - Fit function
 - B signal
 - Comb. background
 - B background
 - Other B backgrounds
 - Events / 5.0 MeV

- **M(J/ψ K⁺K⁻) [GeV]**
 - Fit function
 - B₂⁻ signal
 - Background
 - Events / 2.6 MeV

- **B_s ct [cm]**
 - Fit function
 - B₂⁻ signal
 - Background
 - Events / 50 µm

Data/Fit / σ
- (Data - Fit) / σ

Sept. 13, 2017 T. Madlener, EXA 2017
Mass fits for B^+ and B_c^+

Graph 1:
- **Y-axis:** Events / 10 MeV
- **X-axis:** $M(J/\psi\pi)$ [GeV]
- **Legend:**
 - Fit function
 - B^+_c signal
 - $B^+_c \rightarrow J/\psi K^+$
 - Comb. background

Graph 2:
- **Y-axis:** Events / 10 MeV
- **X-axis:** $M(J/\psi K^+)$ [GeV]
- **Legend:**
 - Fit function
 - B^+ signal
 - $B^0 \rightarrow J/\psi X$ background
 - $B^0 \rightarrow J/\psi\pi^+$
 - Comb. background

Footnotes:
- CMS Preliminary (8 TeV)
- 19.7 fb^{-1}
- Sept. 13, 2017

T. Madlener, EXA 2017
Neutral B meson decay

- Decay rate of neutral B^0_q mesons characterized by
 \[
 \Gamma_q = (\Gamma^q_L + \Gamma^q_H)/2 \quad \text{average decay width}
 \]
 \[
 \Delta \Gamma_q = \Gamma^q_L - \Gamma^q_H \quad \text{decay width difference}
 \]
 \[
 \Gamma^q_{L,H} - \text{widths of light (L) and heavy (H) mass eigenstates}
 \]

- Decay rate into final state f
 \[
 \Gamma_{B^0_q \to f} = R^f_L e^{-\Gamma^q_L t} + R^f_H e^{-\Gamma^q_H t}
 \]
 \[
 R^f_{L,H} - \text{amplitudes of light and heavy mass eigenstates}
 \]

→ ct distribution consists of two exponentials

- B^0 system: $\frac{\Delta \Gamma_d}{\Gamma_d} = (-0.3 \pm 1.5)\% \rightarrow ct$ distribution can be treated as one exponential

- B^0_s system: $\frac{\Delta \Gamma_s}{\Gamma_s} = (12.4 \pm 1.1)\% \rightarrow$ sizeable deviations from exponential
B_S^0 measurements

- Measured in two final states: $J/\psi \phi(1020)$ and $J/\psi \pi^+ \pi^-$

- $J/\psi \pi^+ \pi^-$:
 - $0.9240 < M(\pi^+ \pi^-) < 1.0204$ GeV \rightarrow dominated by $f_0(980) \rightarrow$ CP-odd final state
 - $c\tau_{B_S^0}^{CP\text{-odd}} \approx 1/\Gamma_H$

- $J/\psi \phi(1020)$:
 - Admixture of one CP-odd and two CP-even states
 - $c\tau_{\text{eff}} = f_H c\tau_H + (1 - f_H) c\tau_L$
 - $f_H = |A_\perp|^2 c\tau_H / (|A|^2 c\tau_L + |A_\perp|^2 c\tau_H)$
 - Complementary to weak mixing phase analysis