Hadron spectroscopy in LHCb

Antimo Palano

INFN and University of Bari, Italy On behalf of the LHCb Collaboration

Outline:

- The LHCb experiment.
- The observation of pentaquark candidates
- Observation of possible tetraquark states
- Observation of new Baryonic states

EXA 2017 - International Conference on Exotic Atoms and Related Topics, Wien, September 11-15, 2017

- \square High cross-section of heavy-quark production.
- \Box Excellent decay time resolution.
- \square Excellent particle identification.
- \square Excellent momentum resolution.
- \Box Flexible trigger.

The LHCb experiment

□ Efficiency for $b\bar{b}$ production in LHCb is 27% of *b* or \bar{b} and 25% of $b\bar{b}$ pair. □ Collected Luminosity.

 \Box Most of the analyses presented here made use of Run1(7+8 TeV) (3fb⁻¹) dataset only.

 \Box A few analyses make use also of the Run2 (13 TeV) (1.7 fb^{-1}) data.

Multiquark states

 \Box In the original Gell-Mann paper ("A schematic model for baryons and mesons", Phys. Lett. 8, (1964)).

 \square "Baryons can now be constructed from quarks by using combinations $(qqq), (qqqq\bar{q}),$ etc., while mesons are made out of $(q\bar{q}), (qq\bar{q}\bar{q}),$ etc.

 \Box Today $qqqq\bar{q}$ baryons are called pentaquarks, $qq\bar{q}\bar{q}$ mesons are called tetraquarks.

Quarkonium Tetraquarks

The rise and fall of pentaquarks

□ Low statistics evidences for "pentaquarks" were provided by several experiments around 2005-2006 (see A. Dzierba, C. Mayer and A. Szczepaniak, hep-ex/04120). □ Evidences for Θ^+ in the nK^+ and pK_S^0 .

□ Significances in these data were largely overestimated and high statistics searches gave negative results (See for example BaBar: Phys.Rev.Lett. 95 (2005) 042002, FOCUS: Phys.Lett. B639 (2006) 604). □ Around 2007 pentaquarks were dead.

Observation of $J/\psi p$ resonances in $\Lambda_b^0 \to J/\psi p K^-$ decays in LHCb

 \Box Multivariate Analysis (MTVA) selection.

 \Box 26,007 ± 166 Λ_b^0 events with 94.6% purity.

□ The Dalitz plot shows rich Λ's resonant structures along the pK⁻ axis.
□ Unexpected structure along the J/ψp axis.

(PRL 115, 072001 (2015)).

Amplitude analysis and mass projections

 \Box Key point is a full amplitude analysis which also describes the complex resonant structure in the pK^- final state.

 \Box The analysis requires the presence of two new resonances (labelled P_c).

[]	Resonances para	meters and a	ngular anal	ysis
Resonance	Mass~(MeV)	Width (MeV)	Significance	Fit fraction (%)
$P_c(4380)^+$	$4380\pm8\pm29$	$205 \pm 18 \pm 86$	9σ	$8.4 \pm 0.7 \pm 4.2$
$P_c(4450)^+$	$4449.8 \pm 1.7 \pm 2.5$	$39\pm5\pm19$	12σ	$4.1\pm0.5\pm1.1$

□ The best fit has $J^P = 3/2^-$ and $J^P = 5/2^+$. □ Good description of the angular distributions. □ Measure the real and imaginary parts of the P_c amplitudes (PRL 115, 072001 (2015)). □ Argand Diagram consistent with expectations from a Breit-Wigner behaviour.

□ Model independent analysis gives consistent results (Phys. Rev. Lett. 117, 082002 (2016)).

Search for other P_c^+ decay modes

 \Box Finding the same P_c^+ in other channels is helpful to understand P_c^+ production mechanism and internal structure.

 \square Two P_c^+ production mechanisms predicted.

 \Box The two cases can be tested using the $R_{\pi/K}$ ratio which is expected to be very different.

$$R_{\pi/K} = \frac{\mathcal{B}(\Lambda_b^0 \to \pi^- P_c^+)}{\mathcal{B}(\Lambda_b^0 \to K^- P_c^+)} \approx 0.07 - 0.08, \quad R_{\pi/K} = 0.58 \pm 0.05$$

Cheng, Phys. Rev. D 92, 096009 (2015), Hsiao, Phys. Lett. B 751, 572 (2015)

Study of $\Lambda_b^0 \to J/\psi p \pi^-$ decays in LHCb

□ Branching fraction for the Cabibbo suppressed $\Lambda_b^0 \to J/\psi p\pi^-$ is ≈ 8% of the Cabibbo favoured $\Lambda_b^0 \to J/\psi pK^-$ decay mode. □ More complex because of the possible contribution of $Z_c(4200)^- \to J/\psi \pi^-$ (observed by Belle in $B^0 \to J/\psi K^+ \pi^-$ (PRD 90 (2014) 112009)).

 \Box Full amplitude analysis. Accurate description of the rich resonant structure in the $p\pi^-$ final state.

$$\Lambda_b \to J/\psi N^*(\to p\pi^-), \ \Lambda_b \to \pi^- P_c^+(\to J/\psi p), \ \Lambda_b \to pZ_c(4200)^-(\to J/\psi\pi^-)$$

Phys. Rev. Lett. 117, 082003 (2016)

Resonances decaying to $J/\psi\phi$ in $B^+ \to J/\psi\phi K^+$

□ The X(4140) state is first claimed by the CDF collaboration in 2008. (PRL 102 242002). □ Narrow width: $\Gamma = 11.7^{+8.3}_{-5.0} \pm 3.7$ MeV. Many experiments results.

\Box Summary of the experimental evidences.

Experiment	CDF	Belle	CDF	LHCb	CMS	D0	BaBar
year	2008	2009	2011	2011	2013	2013	2014
Significance $(N\sigma)$	3.8	1.9	5.0	1.4	5.0	3.1	1.6

New results on $B^+ \to J/\psi \phi K^+$ from LHCb

□ Update of the analysis using Run1 data $(3fb^{-1})$ (PRL118, 022003 (2017), PRD95, 012002 (2017)).

 \Box Six dimensional amplitude analysis.

 \Box The best fit requires the presence of four X states and a non-resonant term.

	New re	sults	on B^{-}	$^{+} \rightarrow J/\psi \phi K^{+}$ fr	om LHCb
□ Resonances pa	arameters (PRL118	, 022003	(2017)).	
		σ	J ^{PC}	<i>M</i> (MeV)	Γ (MeV)
	<i>X</i> (4140)	8.4	1++	4160 ± 4 ⁺⁵ ₋₃	$83 \pm 21^{+21}_{-14}$
	X(4274)	5.8	1++	4273 ± 8 ⁺¹⁷ ₋₄	56 ± 11 + 8 - 11
	<i>X</i> (4500)	6.1	0++	$4506 \pm 11^{+12}_{-15}$	92±21+21 -20
	<i>X</i> (4700)	5.6	0++	4704 ± 10 + 14 - 24	$120 \pm 31^{+42}_{-33}$

 \Box The X(4140) is not a narrow resonance.

 \Box A possible diagram for producing a 4-quark state.

 \square Lot of discussions. Interpretation of these states still open.

Study of $\bar{B}^0 \to \psi' \pi^- K^+$ in LHCb

 \Box First analysis from Belle: observation of a new $Z_c(4430)^+ \rightarrow \psi' \pi^-$ in $B \rightarrow K \pi^+ \psi'$ (PRL 100, 142001 (2008)).

 \square Not confirmed by BaBar: data could be described without the presence of a

 $Z_c(4430)^+$ resonance (PRD 79, 112001 (2009)).

 \Box Recent analysis from LHCb (PRL 112, 222002 (2014)).

 $\square B^0$ signal: 25,176 events (Belle: 2,010, BaBar: 2,021 events).

□ Argand diagram shows typical resonance behaviour. Resonance parameters:

$$M(Z_c) = 4475 \pm 7^{+15}_{-25} MeV, \ \Gamma(Z_c) = 172 \pm 13^{+37}_{-34} MeV.$$

 \Box In good agreement with Belle.

- Possible presence of an additional Z_c at a mass of 4239 MeV.
- $\Box Z_c$ is a charged charmonium state. Multiquark state?

Baryon spectroscopy

 \Box Heavy quark effective theory (HQET) predictions for Ω_c states.

□ Ω_c quark content: *ssc*. □ Only $1/2^+$ and $3/2^+$ ground states were known.

Observation of five new Ω_C states in LHCb

□ Explore excited Ω_c states in their strong decay to $\Xi_c^+ K^-$ (PRL 118 (2017) 182001). □ Make use of data collected at 7,8 and 13 TeV (3.3 fb^{-1}).

 $\Box \Xi_c^+$ reconstructed in the Cabibbo suppressed mode $\Xi_c^+ \to p K^- \pi^+$.

 $\Box \approx 10^6 \Xi_c^+$ reconstructed with a 83% purity.

 $\Box \Xi_c^+$ combined with a prompt K^- : five narrow Ω_C observed.

 \square No structure in the Ξ_c^+ sidebands or in the wrong sign $\Xi_c^+ K^+$ mass spectrum.

Observation of five new Ω_C states

 \Box Describe peaks with relativistic Breit-Wigner convoluted with Gaussian with σ from 0.7 to 1.7 MeV.

 \Box Account for feed-down from $\Omega_c \to K^- \Xi'_c (\to \Xi_c \gamma)$.

 \square Model enhancement at ≈ 3200 MeV with one Breit-Wigner.

 \square Resonances parameters.

D and P-wave states may be narrow (G. Chiladze, A. Falk arXiv: 9707507).
Need to measure the quantum numbers of these states.
Many phenomenological interpretations, including the possible presence of pentaquarks.

The search for double charmed baryons Ξ_{cc} states

 \Box The first claim for observing the Ξ_{cc}^+ (*dcc*) state comes from SELEX experiment (PRL 89 (2002) 112001, PLB 628 (2005) 18)

□ Not observed by BaBar (Phys.Rev. D74 (2006) 011103), nor by Belle (Phys.Rev.Lett. 97 (2006) 162001).

 \Box Different production mechanisms?

Observation of the double charmed baryon Ξ_{cc}^{++} in LHCb

 \Box Search for the Ξ_{cc}^{++} (ucc) using the decay (Phys. Rev. Lett. 111 (2017) 180001).

$$\Xi_{cc}^{++} \to \Lambda_c K^- \pi^+ \pi^+, \quad \Lambda_c \to p K^- \pi^+ \ (BR = 10\%)$$

 \Box Analyze 1.7 fb^{-1} of Run2 using a dedicated high efficiency trigger.

 \Box First observation.

 \Box No signal observed in the Λ_c sidebands, no signal in the wrong sign $\Lambda_c K^- \pi^+ \pi^-$ combination.

 \Box Consistent signal also observed in the Run1 data.

 \Box Inconsistent with expected isospin splitting for Ξ_{cc}^+ .

Amplitude analysis of $\Lambda_b \to D^0 p \pi^-$ in LHCb

 \Box The Λ_c spectrum needs to be completed.

 \Box Explore the Λ_c spectroscopy using the $D^0 p$ final state (JHEP 05 (2017) 30).

 \Box The inclusive $D^0 p$ was studied by BaBar (PRL 98 (2007) 01).

 \Box High statistics clean Λ_b signal in LHCb (11,200 events, 86% purity).

Amplitude analysis of $\Lambda_b \to D^0 p \pi^-$

□ Follow helicity formalism to describe 5D amplitude of $D^0 p$ and $p\pi^-$ masses (JHEP 05 (2017) 30). □ Dalitz plot and $D^0 p$ mass projection.

$$\Box \Lambda_{c}(2860)^{+} \text{ parameters (first observation), } J^{P} = 3/2$$

$$m = 2856.1^{+2.0}_{-1.7}(stat) \pm 0.5(syst)^{+1.1}_{-5.6}(model) \text{ MeV}$$

$$\Gamma = 67.6^{+10.1}_{8.1}(stat) \pm 1.4(syst)^{+5.9}_{-20.0}(model) \text{ MeV}$$

$$\Box \Lambda_{c}(2880)^{+} \text{ parameters, } J^{P} = 5/2^{+} \text{ preferred}$$

$$m = 2881.75 \pm 29(stat) \pm 0.07(syst) {}^{+0.14}_{-0.20}(model) \text{ MeV}$$

$$\Gamma = 5.43 {}^{+0.77}_{0.71}(stat) \pm 0.29(syst) {}^{+0.75}_{-0.00}(model) \text{ MeV}$$

$$\Box \Lambda_{c}(2940)^{+} \text{ parameters, } J^{P} = 3/2^{-} \text{ preferred:}$$

$$m = 2944.8^{+3.5}_{-2.5}(stat) \pm 0.4(syst)^{+0.1}_{-4.6}(model) \text{ MeV}$$

$$\Gamma = 27.7^{+8.2}_{-6.0}(stat) \pm 0.9(syst)^{+5.2}_{-10.4}(model) \text{ MeV}$$

Conclusions

 \Box LHCb is a flavor factory, exploring a large set of physics topics.

 \Box In particular, in the spectroscopy field, many new unexplored regions are being studied.

 \Box These studies are producing unexpected results, such as the discovery of "exotic" states, or the observation of many unexpected resonances and particles.

 \Box Basic ingredients of these results are high statistics and purity of the final states and highly sophisticated and newly developed full amplitude analyses.

 \Box This field is in rapid development and much more experimantal and theoretical work is needed to understand the full pattern.

 \Box Many more analyses are underway, making use of the large amount of data which are being collected at LHC.