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Building Blocks
Doublet S-wave and Bound States

Triton Charge Radius

Ingredients of EFT6π

I For momenta p < mπ pions can be integrated out as degrees
of freedom and only nucleons and external currents are left.

I For any effective (field) theory write down all terms with
degrees of freedom that respect symmetries.

I Develop a power counting to organize terms by their relative
importance.

I Calculate respective observables up to a given order in the
power counting.
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Building Blocks
Doublet S-wave and Bound States

Triton Charge Radius
Lagrangian

The two-body Lagrangian to N2LO in EFT 6π is

L2 = N̂†

(
i∂0 +

~∇2

2MN

)
N̂ + t̂†i

∆t −
1∑

n=0

cnt

(
i∂0 +

~∇2

4MN
+

γ2
t

MN

)n+1
 t̂i

+ ŝ†a

∆s −
1∑

n=0

cns

(
i∂0 +

~∇2

4MN
+

γ2
s

MN

)n+1
 ŝa

+ yt
[
t̂†i N̂

TPi N̂ + H.c.
]

+ ys
[
ŝ†aN̂

T P̄aN̂ + H.c.
]
.

I c0t , c0s -range corrections
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The LO dressed deuteron propagator is given by a bubble sum

c
(0)
0t c

(1)
0t

(NLO) (N2LO)

(LO)

Im[p]
3S1(S−matrix)

mπ

iγt

Re[p]

(γt ≈ 45MeV)

(Z -parametrization) At
LO coefficients are fit to
reproduce the deuteron
pole and at NLO to
reproduce the residue
about the deuteron pole
(Phillips,Rupak, and
Savage (2000 )).



Doublet S-wave and Bound state

The three-body Lagrangian is

L3 =ψ̂†

[
Ω− h2(Λ)

(
i∂0 +

~∇2

6MN
+

γ2
t

MN

)]
ψ̂

+
∞∑
n=0

[
ω

(n)
t0 ψ̂

†σi N̂ t̂i − ω(n)
s0 ψ̂

†τaN̂ŝa
]

+ H.c..

where ψ is an auxiliary triton field. The LO triton vertex function
G0(E , p) is given by following coupled integral equations (Hagen,
Hammer, and Platter (2013))

G0(E , p) = B̃0 + K`=0
0 (q, p,E )⊗ G0(E , q),



Building Blocks
Doublet S-wave and Bound States

Triton Charge Radius

The LO kernel in cluster-configuration (c.c) space is

K`
0(q, p,E ) = −2π

qp
Q0

(
q2 + p2 −MNE − iε

qp

)(
1 −3
−3 1

)
×
(
Dt(E , ~q) 0

0 Ds(E , ~q)

)
.

The LO triton vertex function and the inhomogeneous term B̃0 are
c.c. space vectors given by

G0(E , p) =

(
G0,ψ→Nt(E , p)
G0,ψ→Ns(E , p)

)
, B̃0 =

(
1
1

)
.

The ⊗ operator is given by

A(q)⊗B(q) =
1

2π2

∫ Λ

0
dqq2A(q)B(q).
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Building Blocks
Doublet S-wave and Bound States

Triton Charge Radius

The NLO (G1(E , p)) and NNLO (G2(E , p)) triton vertex functions
are
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Building Blocks
Doublet S-wave and Bound States

Triton Charge Radius

The NLO triton vertex function is

G1(E , p) = G0(E , p)◦R1

(
E − ~p2

2MN
, ~p

)
+K`=0

0 (q, p,E )⊗G1(E , q),

and the NNLO triton vertex function

G2(E , p) =
[
G1(E , p)− c1 ◦ G0(E , p)

]
◦ R1

(
E − ~p2

2MN
, ~p

)
+ K`=0

0 (q, p,E )⊗ G2(E , q),

where

R1(p0, ~p) =


Zt−1
2γt

(
γt +

√
1
4
~p2 −MNp0 − iε

)
Zs−1
2γs

(
γs +

√
1
4
~p2 −MNp0 − iε

)
 ,

and

c1 =

(
Zt − 1
Zs − 1

)
.
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Building Blocks
Doublet S-wave and Bound States

Triton Charge Radius

Defining

Σ0

.

The dressed triton propagator is given by the sum of diagrams

Σ0 Σ0Σ0

which yields

i∆3(E ) =
i

Ω
− i

Ω
HLOΣ0(E )

i

Ω
+ · · ·

=
i

Ω

1

1− HLOΣ0(E )
,

where

HLO = −3ω2
t

πΩ
= −3ω2

s

πΩ
=

3ωtωs

πΩ
.
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Triton Charge Radius

Defining the functions

Σ1 1 1

Σ2 2 2

The NNLO triton propagator is

(NNLO)

(NLO)

Σ0HNLOΣ1

HNLOΣ2 Σ0HNNLO

2HNLOΣ1 Σ1 Σ0 Σ1

h2Σ0 Σ0(HNLO)2

Σ1
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Calculating three-body forces and wavefunction
renormalization of triton

I Method 1: Fix triton pole position at each order (Fixes
three-body forces if binding energy fit to). Calculate residue
about triton pole at each order to get triton wavefunction
renormalization.

I Method 2: Note that in general triton pole and wavefunction
renormalization given by perturbative expansion

1− HΣ(E ) =

1− (H0 + H1 + · · · )(Σ0(B0 + B1 + · · · ) + Σ1(B0 + B1 + · · · ) + · · · ) = 0

Zψ =
1

Σ′(E )
=

1

Σ′0(E ) + Σ′1(E ) + · · · =
1

Σ′0(E )
− Σ′1(E )

Σ′0(E )
+ · · ·



Properly Renormalized Vertex Function
Ensuring that triton propagator has pole at triton binding energy
gives conditions

HLO =
1

Σ0(B)
, HLOΣ1(B) + HNLOΣ0(B) = 0,

HLOΣ2(B)+HNLOΣ1(B)+

(
HNNLO +

4

3
(MNB + γ2

t )Ĥ2

)
Σ0(B) = 0.

Triton wavefunction renormalization is residue about pole leads to
triton vertex functions

Γ0(p) =
√
ZLO
ψ G0(B, p) ,

√
ZLO
ψ =

√
π

Σ′0(B)

Γ1(p) =
√
ZLO
ψ

[
G1(B, p)− 1

2

Σ′1
Σ′0
G0(B, p)

]
.

Γ2(p) =
√
ZLO
ψ

[
G2(B, p)− 1

2

Σ′1
Σ′0
G1(B, p)

+

{
3

8

(
Σ′1
Σ′0

)2

− 1

2

Σ′2
Σ′0
− 2

3
MNĤ2

Σ2
0

Σ′0

}
G0(B, p)

]
.



Triton Charge Form Factor

Charge form factor of triton at LO given by three diagrams

N̂†
[
i∂0 + ie

(
1 + τ3

2

)
Â0

]
N̂

(a) (b) (c)

NLO and NNLO triton charge form factor

(a) (b) (c)

1 1 1

(d) (e)

2 2 2

1 1 1 1 1 1

(a) (b) (c)

h2

(d) (e) (f)

1 1

(g)
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Triton Charge Radius

LO triton charge form factor given by

ZLO
ψ

∑
j=a,b,c

∫
d4k

(2π)4

∫
d4p

(2π)4
GT0 (E , ~P, p0, ~p)χj(E , ~K, ~P, p0, k0, ~p,~k)

× G0(E , ~K, k0,~k),

where G0(E , ~K, k0,~k) is LO triton vertex function in a frame
boosted by momentum ~K

G0(E , ~K, k0,~k) = B̃0

+

[
R0

(
q, k ,

2

3
B0 + k0 −

~K · ~k
3MN

+
~k2

2MN

)
D(0)

(
B0 −

~q2

2MN
, ~q

)]
⊗ G0(B0, ~q).

In the Breit frame we have ~Q = ~P− ~K.
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Focusing on diagram (a) we find

(
χji
a (E , ~K, ~P, p0, k0, ~p,~k)

)µα
νβ

= ie(2π)4δ (k0 − p0) δ(3)

(
~k− ~p− 2

3
~Q

)
× iD(0)

(
2

3
E + k0,~k +

2

3
~K

)
i

1
3E − k0 − (~k− 1

3
~K)2

2MN
+ iε

× i

1
3E − k0 − (~k− 2

3
~Q− 1

3
~P)2

2MN
+ iε

(
1 + τ3

2

)µ
ν

δαβ δ
ij .

Projecting in the doublet S-wave channel gives

χa(E , ~K, ~P, p0, k0, ~p,~k) = ie(2π)4δ (k0 − p0) δ(3)

(
~k− ~p− 2

3
~Q

)
× iD(0)

(
2

3
E + k0,~k +

2

3
~K

)
i

1
3E − k0 − (~k− 1

3
~K)2

2MN
+ iε

× i

1
3E − k0 − (~k− 2

3
~Q− 1

3
~P)2

2MN
+ iε

(
0 0
0 2/3

)
.



Triton charge form factor

LO charge form-factor contribution from diagram (a) is

F
(a)
0 (Q2) = ZLO

ψ

{
G̃

T

0 (p)⊗A0(p, k ,Q)⊗ G̃0(k)

+2G̃
T

0 (p)⊗A0(p,Q) +A0(Q)
}
,

and NLO contribution is

F
(a)
1 (Q2) = ZLO

ψ

{
G̃

T

0 (p)⊗A1(p, k ,Q)⊗ G̃0(k)

+ 2G̃
T

1 (p)⊗A0(p, k ,Q)⊗ G̃0(k)

+2G̃
T

0 (p)⊗A1(p,Q) + 2G̃
T

1 (p)⊗A0(p,Q) +A1(Q)
}
,

where

G̃n(p) = D(0)

(
B0 −

~p2

2MN
, ~p

)
Gn(B0, p).



Triton charge form factor
The vector term is

An(p,Q) = −MN

2π

1∣∣∣
0

∫ Λ

0
dqq2

∫ 1

−1
dx

1

qQx

1

p
√
q2 − 2

3qQx + 1
9Q

2

× Q0

p2 + q2 + 1
9Q

2 + (y − 2
3 )qQx −MNB0

p
√
q2 − 2

3qQx + 1
9Q

2


× D

(n)
s

(
B0 −

q2

2MN
− Q2

12MN
+

(
1

2
− y

)
qQx

MN
, ~q

)(
2
−2/3

)
,

and scalar term is

An(Q) =
MN

4π2

1∣∣∣
0

∫ Λ

0
dqq2

∫ 1

−1
dx

1

qQx

2

3

× D
(n)
s

(
B0 −

q2

2MN
− Q2

12MN
+

(
1

2
− y

)
qQx

MN
, ~q

)
.



LO triton charge form factor

F0(Q2) = F
(a)
0 (Q2) + F

(b)
0 (Q2) + F

(c)
0 (Q2),

NLO triton charge form factor

F1(Q2) =
(
F

(a)
1 (Q2) + F

(b)
1 (Q2) + F

(c)
1 (Q2) + F

(d)
1 (Q2)

)
−Σ′1

Σ′0
F0(Q2),

and NNLO triton charge form factor

F2(Q2) =
(
F

(a)
2 (Q2) + F

(b)
2 (Q2) + F

(c)
2 (Q2) + F

(d)
2 (Q2)

)
− Σ′1

Σ′0

(
F

(a)
1 (Q2) + F

(b)
1 (Q2) + F

(c)
1 (Q2) + F

(d)
1 (Q2)

)
+

((
Σ′1
Σ′0

)2

− Σ′2
Σ′0
− 4

3
MNĤ2

Σ2
0

Σ′0

)
F0(Q2) +

4

3
MNĤ2

Σ2
0

Σ′0

−
〈
r2
p

〉
6

Q2F0(Q2)−
〈
r2
n

〉
6

Q2Fn(Q2).



How to get charge radius

The triton charge form factor expanded in powers of Q2 yields

F (Q2) = 1−
〈
r2

3H

〉
6

Q2 + · · ·

I Method 1: Calculate charge form factor for various low
values of Q2. Fit a line as function of Q2 to the resulting
data. The slope of this line is related to the charge radius.

I Method 2: Expand all diagrams as functions of Q2 and take
only Q2 pieces. Then calculate this and obtain the charge
radius. Has advantage of allowing more integrals to be done
analytically. Therefore is more numerically stable and allows
higher cutoffs to be calculated.
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The triton charge radius squared to NNLO is given by〈
r2

3H

〉
2

=
〈
r2

3H

〉
2̃

+
〈
r2
p

〉
+ 2

〈
r2
n

〉
.

Taking the square root and expanding perturbatively gives

rc =
√〈

r2
3H

〉
0

 1︸︷︷︸
LO

+
1

2

〈
r2

3H

〉
1〈

r2
3H

〉
0︸ ︷︷ ︸

NLO

+
1

2

〈
r2

3H

〉
2〈

r2
3H

〉
0

− 1

8

(〈
r2

3H

〉
1〈

r2
3H

〉
0

)2

︸ ︷︷ ︸
N2LO

+ · · ·

 .
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Triton Charge Radius

LO EFT6π prediction via wavefunctions rC = 2.1± .6fm (Platter
and Hammer (2005))
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and now for
something
completely
different...?



Halo-Nuclei

I For halo-nuclei Rhalo > Rcore , can expand in powers of
Rcore/Rhalo .

I If a probe has De Broglie wavelength λ, and λ > Rcore the
structure of the core cannot be resolved and it can be treated
as a fundamental degree of freedom.

I Breakdown scales of halo-EFT set by E? (first excited state
energy of core) and mπ



Halo-Nuclei

http://www.nupecc.org/report97/report97.pdf



Halo-Nuclei

I LO halo-nuclei vertex function given by (Hagen, Hammer, and
Platter (2013))

I S-wave interactions in both two and three-body sector

I Nearly identical to pionless EFT

I Differences from pionless EFT: core is spin-0, three-body force
chosen differently, and parameters will have different values



Unitary equal mass limit

Calculation of LO halo-nuclei charge radius nearly identical to
triton charge radius calculation. In Unitary limit and equal mass
limit it is found

Authors mE3B

〈
r2
c

〉
Vanasse .224

Hagen et al. .265

Using analytical techniques in (Braaten and Hammer (2006)) it
can be shown that mE3B

〈
r2
c

〉
= (1 + s2

0 )/9 ≈ .224 in the unitary
and equal mass limit. Changing a single factor in the code of
Hagen et al. they would also obtain .224.



Conclusions

I Can now calculate bound state properties strictly
perturbatively in EFT6π.

I Further work needs to be done considering other bound state
properties and including Coulomb interactions to probe
properties of Helium-3.

I Various techniques can calculate bound state properties of the
triton. These techniques should all be benchmarked against
known analytical solutions in certain limits.

I Techniques should give MNE3H

〈
r2

3H

〉
= .224... in unitary and

equal mass limit.

I Techniques should produce Efimov spectrum in unitary limit.



Conclusions and Future directions

I Calculating the nd scattering amplitude to higher orders in
EFT6π strictly perturbatively is made easier by new techniques.

I Calculating nd scattering to higher orders will allow
investigation of polarization observables, in particular Ay .

I nd scattering to N4LO will require insertion of three-body
SD-mixing terms, three-body P-wave corrections, and etc...

I Now that bound states can also be calculated perturbatively,
one can consider calculations including external currents such
as γ + 3He→ p + d , γ + 3H→ n + d ,γ + 3He→ γ + 3He,
γ + 3H→ γ + 3H, and 3H→ e− + ν̄e + 3He.

I Further work needs to be done on disagreement in halo-nuclei



LO three-body force
The LO doublet S-wave amplitude for nd scattering is given by the
sum of diagrams

,

which gives

TLO = tLO + HLO
1

1− HLOΣ0(E )
πZLO (G0,Nt→Nt(E , k))2 ,

where
tLO = ZLOt

`=0
0,Nt→Nt(k , k)

Fitting to the doublet S-wave nd scattering length and , HLO is
given by

HLO =
x

1 + xΣ0(E )
, x =

−
(

3πand
MN

+ TLO

)
πZLO (G0,Nt→Nt(E , k))2



The NLO doublet S-wave amplitude for nd scattering is given by
the sum of diagrams

1 2 1 Σ1

HNLO Σ0{ }
where

Σ1 1 1

The N2LO contribution can be calculated similarly but has many
more contributions.



Integral equations for nd scattering amplitude

Projecting out in total angular momentum ~J = ~L + ~S we obtain
the set of coupled integral equations in cluster configuration space

t(n)
β,α(k , p) = K(n)

β,α(k , p,E )

+
∑
γ

n−1∑
i=1

K(n−i)
β,γ(q, p,E )⊗

(
R(0)

(
E − q2

2MN
, q

)
◦ t(i)

γ,α(k , q)

)

+
n−1∑
i=1

R(n−i)
(
E − p2

2MN
, p

)
◦ t

(i)
β,α(k, p)

+ K
(0)
β,β(q, p,E )⊗

(
R(0)

(
E − q2

2MN
, q

)
◦ t

(n)
β,α(k , q)

)
where α = J, L, S , β = J, L′,S ′, and γ = J, L′′,S ′′ and

A(q)⊗B(q) =
1

2π2

∫ Λ

0
dqq2A(q)B(q),

◦: Schur product in
cluster-configuration space



Three-body breakup cross-section
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