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OUTLINE

Subtractive renormalization

Seduced by the Λ→∞limit

Some wins for perturbative power counting

Coulomb energies and isospin symmetry in Halo EFT



SUBTRACTIVE RENORMALIZATION

Consider the zero-energy amplitude resulting from a long-range 
potential v, and a contact term, C

Take difference of T(p,0;0) and T(0,0;0)

Same trick suffices to compute T(p,p’;0):

Afnan & Phillips, PRC, 2004 Yang, Elster, Phillips, PRC, 2008

T (p, 0; 0) = [v(p, 0) + C] +

Z ⇤

0
dp0 p02[v(p, p0) + C]G0(p

0; 0)T (p0, 0; 0)

G0(q;E) =
1

E � q2/(2mR)

Hammer & Mehen, NPA, 2001

T (p, 0; 0) = T (0, 0; 0) + [v(p, 0)� v(0, 0)] +

Z ⇤

0
dp0 p02[v(p, p0)� v(0, p0)]G0(p

0; 0)T (p0, 0; 0)

T (p, p0; 0) = T (0, p0; 0) + [v(p, p0)� v(0, p0)] +

Z ⇤

0
dq q2[v(p, q)� v(0, q)]G0(q; 0)T (q, p

0; 0)



WHAT DO WE LEARN?

Nothing here that can’t be done in original formulation

Avoiding computation of C(Λ) allows Λ→∞ limit to be 
straightforwardly taken

Off-shell behavior of zero-energy amplitude entirely determined 
by scattering length and differences of v

Kernel is negative definite, therefore equation can be used, 
together with RG for T with Λ, to show that effects of cutoff in T 
are of relative order p3



FINITE ENERGIES
Off-shell behavior at one energy suffices to get T for all energies

For small E, high-momentum behavior will be as for T(0)

Extensions:

T (E) = [v + C] + [v + C]G0(E)T (E)

T (E) = T (0) + T (0)[G0(E)�G0(0)]T (E)

“First-resolvent method”

Higher partial waves
Energy-dependent potential
Contact terms ∼ p2

Yang, Elster, Phillips, PRC, 2009

Afnan, Phillips, PRC, 2004

Yang Elster, Phillips, PRC, 2009



NOT THAT SUBTRACTION METHOD
Cf. Frederico et al., who perform difference with T(-μ2/2mR) and 
then assume Born approximation valid for latter

Born approximation never holds for singular potential

Yang, Elster, Phillips, 
PRC, 2007

Frederico, Timoteo, Tomio, PRC, 2007



APPLICATION: ATOM-DIMER SCATTERING AT N
2
LO

Employ “partial resummation”: take nth-order kernel in three-body 
integral equation, and solve for amplitude

Platter, Phillips, FBS, 2006

“Weinberg counting” Bedquae, Griesshammer, Hammer, Rupak, NPA, 2003

After subtraction, can be solved 
numerically for Λ→∞

Cutoff independent results at 
N2LO

S(n) ∼ qn+1 for large q



THE H2 CONFLICT
This suggests no additional three-body force is needed at N2LO

In contradistinction to the findings of BGHR
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Confirmed in subsequent analysis
Chen, Phillips, FBS, 2013 

Vnnasse, PRC, 2014



CONFLICT RESOLUTION

Harder kernel⇒softer amplitude (cf. NN scattering)

Platter-Phillips results emerge only if |a| ≫ |r| ≫ 𝓁

Non-perturbative 
treatment of kernel 

modifies high-p amplitude

T(n) ∼ 1/p1+n/2 (Oscillatory)
as p→∞



PERTURBATIVE COULOMB

NLO graph:

In co-ordinate space

Anticipate αem ln(R) divergence at NLO
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IMPLICATIONS FOR EM OPERATORS

Unitary limit, analog of reduced radial wave function

fn(⇢) = 2n

s
sinh(⇡s0)

⇡s0
⇢1/2Kis0(

p
2n⇢)

h⇢2i = 2

Z 1

R
Kis0(

p
2⇢)⇢3Kis0(

p
2⇢)d⇢

Short-distance contribution ∼ 𝜅2 R4 cf. 1/𝜅2 at LO

Vanasse result for 3H: hr2i1/2 = 1.13 + 0.46 + 0.27± 0.07 fm
Vanasse, 2016

Short-distance contribution 
to tri-nucleon form factors



THE STRONG PC SCATTERING LENGTH
‘Strong” proton-core scattering length is defined as the proton-
core scattering length when the Coulomb potential is off

In Halo EFT with PDS it is 

Relationship to observable, aC:

1

apc
=

2⇡

C0(µ)mR
+ µ

1

aMS
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Scheme and scale dependent

Includes effects of photons “above μ”: but dressed by strong 
interactions, “Coulomb-nuclear interference”

Kong & Ravndal, 1998; Gegelia, 2001;  Higa, Hammer, van Kolck, 2008; Ryberg et al., 2014



BINDING ENERGY SHIFTS DUE TO COULOMB

Coulomb energy then defined as E-Estrong

Coulomb energy of a proton halo is scheme and scale dependent

Thomas-Ehrman shift? 

Recent evaluation of 3He-3H binding-energy difference in expansion 
about unitary limit:  B(3He) - B(3H)=-0.86 ± 0.17 MeV

Possible because Coulomb does not require additional renormalization 
at LO in αem in pionless EFT

Coulomb energy of 2p halos? “Three-body Thomas-Ehrman 
shift” (16Ne/16C)?

H
strong

| si = E
strong

| si;
(H

strong

+ VC)| i = E| i

Koenig, Griesshammer, Hammer, van Kolck, JPG, 2016



PROTON HALOS FROM NEUTRON HALOS?
Can we predict the energy of a proton halo from its isospin mirror?

First problem: neutron halo already fine tuned, require another fine 
tuning to also have proton halo bound or nearly bound 

Note that if neutron is bound by little enough to be in a halo then 
Coulomb must be treated non-perturbatively

Theory seems to work 
for17F*, but this state is 
in the deep Coulomb 
regime, with kc r ∼ 1

Ryberg et al., Ann. Phys., 2016



ISOSPIN SYMMETRY IN HALO EFT
Second problem: Halo EFT is typically asserted to have 
isospin symmetry, but does it?

Simplest case: pp vs. nn systems

C0,nn and C0, pp differ in their μ-dependence, due to C0,pp 
having to account for Coulomb interactions 

So at what scale does isospin apply? μ=mπ? Predicts:
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For ann=-18.6 fm, predicts aC,pp=-6.45 fm cf. aC,pp=-7.8063(26) fm



AND IT GETS WORSE…

Consider a p-wave proton-core system, need to calculate:

Results for effective-range parameters in terms of Lagrangian

Zhang, Nollett, Phillips, 2014 and in preparation

7Li-n 7Be-p

γ1 (MeV) 57.8 15

r1 (fm-1) -1.43 -0.34



CONCLUSION
Subtractive renormalization illuminates aspects of the three-body problem 
in pionless EFT/halo EFT, but is not a silver bullet

Higher-order corrections should not be iterated at arbitrarily large cutoffs: 
they change the asymptotic behavior of the amplitude. This tends to 
produce erroneous conclusions about the order at which counterterms are 
needed.

Perturbative analysis should permit extraction of order at which a particular 
effect becomes sensitive to short-distance pieces of the 3B wave function; 
unitary limit wf in hyperspherical co-ordinates can be useful for this

UV piece of Coulomb-nuclear interference is associated with non-
observability of Coulomb energies 

Complicates implementation of isospin symmetry in Halo EFT: how does 
isospin relate, e.g. 3He(4He,γ)7Be and 3H(4He,γ)7Li


