Universal Range Effects to Efimov Features

Chen Ji ECT* / INFN-TIFPA

EMMI RRTF, 02.06.2016

In Collaboration with: Bijaya Acharya, Eric Braaten, Lucas Platter, Daniel Phillips

EFT for 3 identical bosons

• LO $(r/a)^0$ EFT Lagrangian for 3 identical bosons

$$\mathcal{L} = \psi^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2m} \right) \psi - d^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{4m} - \Delta \right) d - \frac{g}{\sqrt{2}} \left(d^{\dagger}\psi\psi + \text{h.c} \right) + hd^{\dagger}d\psi^{\dagger}\psi + \cdots$$

• terms with more derivatives are at higher orders $(r/a)^n$

Non-perturbative features at LO

• atom-atom (dimer) scattering (tune g)

atom-dimer scattering (tune h)

Bedaque, Hammer, van Kolck '99

LO renormalization

• LO 3BF h:

- tune $H(\Lambda) = \Lambda^2 h/2mg^2$: fix one 3-body observable
- limit cycle: $H(\Lambda)$ periodic for $\Lambda \to \Lambda(22.7)^n$ Bedaque *et al.* '00
- scaling invariance \rightarrow Efimov physics Efimov '71

Universal physics at LO

- Universal features in three-body systems (Efimov effects)
 - $\, {\, {\rm o} \, }$ 3-body spectrum: a function of scattering length a
- geometric spectrum

•
$$E_n = (22.7)^{-2} E_{n-1}$$
 in the limit $a \to \infty$

universal relation of recombination features

•
$$a^* = a^+/4.5 = -a^-/21.3$$

• i.e.
$$a_{(n)}^- = 22.7a_{(n-1)}^-$$

Zaccanti et al. '09

Range effects in EFT

• range effects on universal physics

- 2-body observable: $k \cot \delta_0 = -\frac{1}{a} + \frac{r}{2}k^2 + \cdots$
- 3-body observables: \rightarrow in r/a expansion

• r/a corrections (fixed a):

- Hammer, Mehen '01 (NLO)
- Bedaque, Rupak, Griesshammer, Hammer '03 (N²LO, partial resummation)
- Platter, Phillips '06 (N²LO, partial resummation)
- CJ, Phillips '13 (N²LO, full perturbation)

• r/a corrections (variable a):

- Platter, CJ, Phillips '09 (NLO, partial resummation)
- CJ, Platter, Phillips '10; '12 (NLO, full perturbation)

$N^2LO (r/a)^2$ range effects (fixed a)

N²LO corrections to atom-dimer scattering amplitude:
 in 2nd order perturbation theory (~ r²/a²):

N²LO dimer:

 t_0

 $N^{2}LO 3BF$:

two NLO terms:

 t_0

 t_0

 t_0

• N²LO 3-body force: $H_2(E, \Lambda) = r^2 \Lambda^2 h_{20}(\Lambda) + r^2 m E_3 h_{22}(\Lambda)$ \rightarrow one additional 3-body input is needed

> CJ, Phillips FBS '13 c.f. Bedaque et al. '03 & Platter, Phillips '06

N²LO Renormalization in Helium Trimers

N²LO three-body 3BF

 $1/h_{20}(\Lambda)$

•
$$H_2(\Lambda) = r^2 \Lambda^2 h_{20}(\Lambda) + r^2 m E_t h_{22}(\Lambda)$$

 $1/h_{22}(\Lambda)$ [partial version]

Input	$B_t^{(1)}$ [B_d]	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY potential	1.738	96.33	1.205	

Input		$B_t^{(1)}$ [B_d]	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY pote	ential	1.738	96.33	1.205	
a _{ad}	LO	1.723	97.12	1.205	0.8352
a_{ad}	NLO	1.736	89.72	1.205	0.9049
a_{ad} , $B_t^{(1)}$	N^2LO	1.738	116.9	1.205	0.9132

Input		$B_t^{(1)}$ [B_d]	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY potential		1.738	96.33	1.205	
a _{ad}	LO	1.723	97.12	1.205	0.8352
a_{ad}	NLO	1.736	89.72	1.205	0.9049
a_{ad} , $B_t^{(1)}$	N^2LO	1.738	116.9	1.205	0.9132
$B_t^{(1)}$	LO	1.738	99.37	1.178	0.8752
$B_{t}^{(1)}$	NLO	1.738	89.77	1.201	0.9130
$B_t^{(1)}$, a_{ad}	N^2LO	1.738	115.9	1.205	0.9135

Input		$B_t^{(1)}$ [B_d]	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY potential		1.738	96.33	1.205	
a_{ad}	LO	1.723	97.12	1.205	0.8352
a_{ad}	NLO	1.736	89.72	1.205	0.9049
a_{ad} , $B_t^{(1)}$	N^2LO	1.738	116.9	1.205	0.9132
$\overline{B_t^{(1)}}$	LO	1.738	99.37	1.178	0.8752
$B_{t}^{(1)}$	NLO	1.738	89.77	1.201	0.9130
$B_t^{(1)}$, a_{ad}	N^2LO	1.738	115.9	1.205	0.9135

• Difference in 2 renormalization schemes (LO \rightarrow NLO \rightarrow N²LO):

- atom-dimer effective range r_{ad} : 5% \rightarrow 0.9% \rightarrow 0.02%
- ground-state trimer $B_t^{(0)}$: 2% \rightarrow 0.07% \rightarrow 0.9%

• Calculate r/a correction to atom-dimer amplitude

NLO 3-body force:

 $H_1(\Lambda) = r\Lambda \ h_{10}(\Lambda) + r/a \ h_{11}(\Lambda)$

- *a* fixed: *h*₁₁ is absorbed (no additional 3-body input is needed)
- a varies: one additional 3-body input is needed

NLO three-body 3BF

•
$$H_1(\Lambda) = r\Lambda h_{10}(\Lambda) + r/a h_{11}(\Lambda)$$

	$\mathbf{Experiment}^{\dagger\ddagger}$	LO	LO	NLO*
3A res $a_{-,0}$ $[a_B]$	-264 [†]	-264	-244	-264
rec min $a_{+,1}$ $[a_B]$	1160^{\dagger}	1254	1160	1160
Ad res $a_{*,1}$ $[a_B]$	180 [‡]	281	259	210(44)

recombination features are correlated by

$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n \sigma) r; \qquad i = *, +, -; \quad \lambda = 22.694$$

• J_i is non-universal but $J_i - J_j$ is a universal number

- e.g. $J_+ J_- = \sigma/2$, $\sigma = 1.095$
- κ_{*}r and J_i can be fixed by the ratio of two Efimov features
 - e.g. fix $(a_{-,1}/a_{-,0})/\lambda$, $(a_{-,2}/a_{-,1})/\lambda$ deviate from 1 due to range effects
- predict ratios of any other features $(a_{i,n+1}/a_{i,n})/\lambda$

CJ, Braaten, Phillips, Platter, PRA 2015

- LO 3BF: RG limit cycle ightarrow discrete scaling symmetry λ^n
- NLO 3BF: RG range-modification ightarrow discrete scaling breaking $n\sigma$
- 3BF up to NLO can be divided into 4 different contributions

$$H(\Lambda) = H_0(\Lambda/\Lambda_*) + h_{10}(\Lambda/\Lambda_*)\Lambda r + \left[\eta H'_0(\Lambda/\Lambda_*)\ln(\Lambda/\mu) + \tilde{h}_{11}(\Lambda/\Lambda_*)\right] \frac{r}{a}$$

with $H_0' = (\Lambda d/d\Lambda)H_0$

- LO 3BF: RG limit cycle ightarrow discrete scaling symmetry λ^n
- NLO 3BF: RG range-modification ightarrow discrete scaling breaking $n\sigma$
- 3BF up to NLO can be divided into 4 different contributions

$$H(\Lambda) = \underbrace{H_0(\Lambda/\Lambda_*)}_{\text{log periodic}} + \underbrace{h_{10}(\Lambda/\Lambda_*)\Lambda r}_{\text{linear divergence}} + \underbrace{\left[\underbrace{\eta H_0'(\Lambda/\Lambda_*)\ln(\Lambda/\mu)}_{\text{log divergence}} + \underbrace{\tilde{h}_{11}(\Lambda/\Lambda_*)}_{\text{log periodic}}\right] \frac{r}{a}$$
with $H_0' = (\Lambda d/d\Lambda)H_0$

- LO 3BF: RG limit cycle ightarrow discrete scaling symmetry λ^n
- NLO 3BF: RG range-modification ightarrow discrete scaling breaking $n\sigma$
- 3BF up to NLO can be divided into 4 different contributions

$$H(\Lambda) = \underbrace{H_0(\Lambda/\Lambda_*)}_{\text{log periodic}} + \underbrace{h_{10}(\Lambda/\Lambda_*)\Lambda r}_{\text{linear divergence}} + \underbrace{\left[\underbrace{\eta H_0'(\Lambda/\Lambda_*)\ln(\Lambda/\mu)}_{\text{log divergence}} + \underbrace{\tilde{h}_{11}(\Lambda/\Lambda_*)}_{\text{log periodic}}\right] \frac{r}{a}$$
with $H_0' = (\Lambda d/d\Lambda)H_0$

Rewrite 3BF

$$H(\Lambda) = H_0 \left[\ln(\Lambda/\Lambda_*) \right] + \frac{r}{a} \eta H'_0 \left[\ln(\Lambda/\Lambda_*) \right] \ln(\Lambda/\Lambda_*)$$

= $H_0 \left[(1 + \eta r/a) \ln(\Lambda/\Lambda_*) \right]$
= $H_0 \left[\ln(\Lambda/\Lambda_*)^{1 + \eta r/a} \right]$

- LO 3BF: RG limit cycle ightarrow discrete scaling symmetry λ^n
- NLO 3BF: RG range-modification ightarrow discrete scaling breaking $n\sigma$
- 3BF up to NLO can be divided into 4 different contributions

$$H(\Lambda) = \underbrace{H_0(\Lambda/\Lambda_*)}_{\text{log periodic}} + \underbrace{h_{10}(\Lambda/\Lambda_*)\Lambda r}_{\text{linear divergence}} + \underbrace{\left[\underbrace{\eta H_0'(\Lambda/\Lambda_*)\ln(\Lambda/\mu)}_{\text{log divergence}} + \underbrace{\tilde{h}_{11}(\Lambda/\Lambda_*)}_{\text{log periodic}}\right] \frac{r}{a}$$
with $H_0' = (\Lambda d/d\Lambda)H_0$

Rewrite 3BF

$$H(\Lambda) = H_0 \left[\ln(\Lambda/\Lambda_*) \right] + \frac{r}{a} \eta H'_0 \left[\ln(\Lambda/\Lambda_*) \right] \ln(\Lambda/\Lambda_*)$$

= $H_0 \left[(1 + \eta r/a) \ln(\Lambda/\Lambda_*) \right]$
= $H_0 \left[\ln(\Lambda/\Lambda_*)^{1 + \eta r/a} \right]$

• Running 3B parameter at NLO: $\kappa_*(Q, a) = (Q/\kappa_*)^{-\eta r/a} \kappa_*$

RG Improvement

- insert running parameter into LO universal relation
- leads to Renormalization-Group Improved universal relations

$$a_{i,n} = \lambda^n \theta_i \left(\lambda^n |\theta_i| \right)^{\eta r \kappa_* / (\lambda^n \theta_i)} \kappa_*^{-1} + \tilde{J}_i r$$

RG Improvement

- insert running parameter into LO universal relation
- leads to Renormalization-Group Improved universal relations

$$a_{i,n} = \lambda^n \theta_i \left(\lambda^n |\theta_i| \right)^{\eta r \kappa_* / (\lambda^n \theta_i)} \kappa_*^{-1} + \tilde{J}_i r$$

• expand $a_{i,n}$ up to linear-in-r correction

c.f.
$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n \sigma)r$$

requires $\sigma = \eta \pi / s_0$

RG Improvement

- insert running parameter into LO universal relation
- leads to Renormalization-Group Improved universal relations

$$a_{i,n} = \lambda^n \theta_i \left(\lambda^n |\theta_i| \right)^{\eta r \kappa_* / (\lambda^n \theta_i)} \kappa_*^{-1} + \tilde{J}_i r$$

• expand $a_{i,n}$ up to linear-in-r correction

c.f.
$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n \sigma) r$$

requires $\sigma = \eta \pi / s_0$

• verify η by calculating it from three-body force

 $c_K = 0.879$ due to corrections from regulator effects

NLO 3BF ($\Lambda_{NLO} \ll \Lambda_{LO}$)

 $\Lambda_{\rm NLO} \ll \Lambda_{\rm LO}$ to get rid of remaining regulator effects

$$h_{10}(\Lambda) = -\frac{3\pi(1+s_0^2)}{64\sqrt{1+4s_0^2}} \frac{\sqrt{1+4s_0^2} - \cos\left(2s_0\ln\frac{\Lambda}{\Lambda_*} - \tan^{-1}2s_0\right)}{\sin^2\left(s_0\ln\frac{\Lambda}{\Lambda_*} - \tan^{-1}s_0\right)}$$

NLO 3BF ($\Lambda_{NLO} \ll \Lambda_{LO}$)

$$\begin{array}{l} h_{10} \times \sin^2 \left(s_0 \ln(\Lambda/\Lambda_*) - \tan^{-1} s_0 \right) \\ = & -\frac{3\pi (1+s_0^2)}{64\sqrt{1+4s_0^2}} \left[\sqrt{1+4s_0^2} - \cos\left(2s_0 \ln \frac{\Lambda}{\Lambda_*} - \tan^{-1} 2s_0 \right) \right] \end{array}$$

NLO 3BF ($\Lambda_{NLO} = \Lambda_{LO}$)

• $\Lambda_{NLO} = \Lambda_{LO}$ is required for analyzing running LO/NLO 3BF at the same time

-1 >

$$h_{10} \times \sin^2 \left(s_0 \ln(\Lambda/\Lambda_*) - \tan^{-1} s_0 \right)$$

NLO 3BF ($\Lambda_{NLO} = \Lambda_{LO}$)

 $h_{11}(\Lambda)$

NLO 3BF ($\Lambda_{NLO} = \Lambda_{LO}$)

$$[h_{11} - d_K h_{11}(\log)] \times \sin^2 \left(s_0 \ln(\Lambda/\Lambda_*) - \tan^{-1} s_0 \right)$$

= -0.2588 sin (2s_0 ln(\Lambda/\Lambda_*) + arg C_1 + tan^{-1}(s_0/3))

 $d_K = 0.949$ is the NLO regulator compensation factor

LO/NLO Three-Body Force

LO 3BF

$$H_0(\Lambda) = c_K \frac{\sin[s_0 \log(\Lambda/\Lambda_*) + \tan^{-1} s_0]}{\sin[s_0 \log(\Lambda/\Lambda_*) - \tan^{-1} s_0]}$$

NLO 3BF

$$h_{11} \log \text{ term} = -d_K \frac{\sqrt{3}\pi (1+s_0^2)}{16} \frac{(1 + \text{Re}\,C_1)}{\sin^2 \left[s_0 \ln(\Lambda/\Lambda_*) - \tan^{-1} s_0\right]} \ln \frac{\Lambda}{\mu}$$
$$= \eta H'_0(\Lambda) \ln(\Lambda/\mu)$$
with $\eta = \frac{d_K}{c_K} \frac{\sqrt{3}\pi}{32} \left(\frac{s_0^2 + 1}{s_0}\right)^2 (1 + \text{Re}\,C_1) = 0.351$

LO/NLO Three-Body Force

LO 3BF

$$H_0(\Lambda) = c_K \frac{\sin[s_0 \log(\Lambda/\Lambda_*) + \tan^{-1} s_0]}{\sin[s_0 \log(\Lambda/\Lambda_*) - \tan^{-1} s_0]}$$

NLO 3BF

$$h_{11} \log \text{ term} = -d_K \frac{\sqrt{3}\pi (1+s_0^2)}{16} \frac{(1+\operatorname{Re} C_1)}{\sin^2 [s_0 \ln(\Lambda/\Lambda_*) - \tan^{-1} s_0]} \ln \frac{\Lambda}{\mu}$$
$$= \eta H_0'(\Lambda) \ln(\Lambda/\mu)$$
with $\eta = \frac{d_K}{c_K} \frac{\sqrt{3}\pi}{32} \left(\frac{s_0^2 + 1}{s_0}\right)^2 (1+\operatorname{Re} C_1) = 0.351$

• therefore $\sigma = \eta \pi/s_0 = 1.095$

• running 3BF matches observation in NLO predictions

$J_0 \ {\rm vs} \ \mu$

- NLO universal relations: $a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n\sigma)r$
- NLO three-body parameter: $H_1 = \frac{r}{a} 0.351 H_0'(\Lambda) \ln(\Lambda/\mu) + \cdots$
- ${\, {\circ}\, }$ correlations exist between J_i and μ

J_0 vs μ

- NLO universal relations: $a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n\sigma)r$
- NLO three-body parameter: $H_1 = \frac{r}{a} 0.351 H'_0(\Lambda) \ln(\Lambda/\mu) + \cdots$

• correlations exist between J_i and μ

- Compare the universal relations to calculations that employ finite range interaction
- **Deltuva**: Momentum space calculations with short-range separable interaction
- Schmidt, Rath & Zwerger: Two-channel model with 2 parameters and a form factor

Deltuva PRA 2012

$$(a_{-,n+1}/a_{-,n})/\lambda$$

n	0	1	2	3	4
Deltuva 2012	0.7822	0.9665	0.9976	0.9999	1.0000
NLO	<u>0.7822</u>	<u>0.9665</u>	0.9975	0.9998	1.0000
RG-NLO	<u>0.7822</u>	<u>0.9665</u>	0.9975	0.9998	1.0000

Schmidt, Rath & Zwerger 2012

$(a_{-,n+1}/a_{-,n})/\lambda$			$(a_{*,r})$	$a_{*,n}/a_{*,n}$	$_{n})/\lambda$		
n	0	1	2	0	1	2	
Schmidt et al.	0.753	0.962	0.998	0.175	1.764	1.029	
NLO	<u>0.753</u>	0.962	0.997	-8.1	1.150	1.032	$s_{\rm res} = 100$
RG-NLO	<u>0.753</u>	0.962	0.997	0.0002	1.206	1.034	
Schmidt							
et al.	1.008	0.998	0.9998	0.757	0.983	1.001	
NLO	<u>1.008</u>	0.998	0.9998	-0.431	0.986	1.002	$s_{\rm res}=1$
RG-NLO	<u>1.008</u>	0.998	0.9998	0.240	0.986	1.002	

Efimov Effect in Heteronuclear Mixtures

- two heavy atoms (2) and one light atom (1)
- large a_{12} near Feshbach resonance
- small a_{22}

• λ varies with m_1/m_2 .

Observable Features of The Efimov Spectrum

Universal Relations at Leading Order

At $r_0 \rightarrow 0$, $a_{22} \rightarrow 0$,

$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1}; \qquad i = *, +, -$$

System	m_1/m_2	λ	θ_+	$ heta_*$	θ_{-}
⁶ Li-Cs-Cs	4.511×10^{-2}	4.865	0.6114	3.388×10^{-2}	-1.349
⁷ Li-Cs-Cs	5.263×10^{-2}	5.465	0.5887	3.392×10^{-2}	-1.376
⁶ Li-Rb-Rb	6.897×10^{-2}	6.835	0.5492	3.367×10^{-2}	-1.436
⁷ Li-Rb-Rb	8.046×10^{-2}	7.864	0.5266	3.328×10^{-2}	-1.477
40 K-Rb-Rb	0.4598	122.7	0.2194	1.014×10^{-2}	-2.430
⁴¹ K-Rb-Rb	0.4713	131.0	0.2142	9.705×10^{-3}	-2.451

corrections from

- r_{12}/a_{12}
- a_{22}/a_{12}

Up to linear terms,

$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n\sigma) r_{12} + (Y_i + n\bar{\sigma}) a_{22}$$

- σ and $\bar{\sigma}$ are universal numbers for given mass ratio.
- difference btw J_i and Y_i (e.g. $J_* J_-$, $Y_* Y_+$) are universal
- we find $J_+ J_- = \sigma/2$ and $Y_+ Y_- = \bar{\sigma}/2$ for all mass ratios.

Universal relations at Next-to-Leading Order

System	$\sigma = 2(J_0 - J)$	$J_{*} - J_{0}$	$\bar{\sigma} = 2(Y_0 - Y)$	$Y_{*} - Y_{0}$
⁶ Li-Cs-Cs	0.693	0.840	0.141	0.680
⁷ Li-Cs-Cs	0.743	0.828	0.204	0.821
⁶ Li-Rb-Rb	0.840	0.820	0.367	1.11
⁷ Li-Rb-Rb	0.904	0.823	0.502	1.30
40 K-Rb-Rb	2.74	1.52	12.1	8.74
⁴¹ K-Rb-Rb	2.80	1.54	12.7	9.07

Acharya, CJ, Platter, in preparation

Conclusion

• Range corrections to Efimov physics in perturbation:

• NLO for varying *a*:

 $H_1(\Lambda) = r\Lambda \ h_{10}(\Lambda/\Lambda_*) + r/a \ h_{11}(\Lambda/\mu)$

• N²LO for fixed *a*:

$$H_2(\Lambda) = r^2 \Lambda^2 h_{20}(\Lambda/\Lambda_*) + r^2 m E_3 h_{22}(\Lambda/\mu)$$

 Universal relations in range effects are connected with running three-body parameters

$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n\sigma)r$$

$$\kappa_*(Q,a) = (Q/\kappa_*)^{-\eta r/a} \kappa_*$$

• Universal range effects and short-a effects in heteronuclear mixtures