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Widely	believed:	
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SFII	–	Adelberger	et	al.,	Rev.	Mod.	Phys.	83,	195	(2011)	
in quadrature, we find that the current best estimates for
S11ð0Þ are

4:01ð1# 0:009Þ $ 10%25 MeV b potential models;

4:01ð1# 0:009Þ $ 10%25 MeV b EFT&;

3:99ð1# 0:030Þ $ 10%25 MeV b pionless EFT:

(24)

The larger uncertainty in the pionless EFT result is due to the
relatively weak constraints on L1;A that can be imposed within
two-nucleon systems, but, as mentioned, this situation will
soon be improved. The agreement of the central values
obtained in the potential model and EFT* indicates the
robustness of the results as long as the two-body current is
constrained by tritium ! decay. Meanwhile, the agreement of
the error estimates in the two approaches is primarily due to
the fact that, as explained above, the dominant part of the
uncertainty has been estimated using the same argument.
Based on the result obtained in the potential model and
EFT*, we adopt as the recommended value

S11ð0Þ ¼ 4:01ð1# 0:009Þ $ 10%25 MeV b: (25)

We adopt the Bahcall and May (1969) value for S011ð0Þ

S011ð0Þ ¼ S11ð0Þð11:2# 0:1Þ MeV%1: (26)

Bahcall and May (1969) also estimated dimensionally that
S0011ð0Þ would enter at the level of (1%, for temperatures
characteristic of the solar center. As this is now comparable to
the overall error in S11, we recommend that a modern calcu-
lation of S0011ð0Þ be undertaken.

IV. THE dðp;!Þ3He RADIATIVE-CAPTURE REACTION

The radiative capture of protons on deuterium is the second
reaction occurring in the pp chain. Because this reaction is so
much faster than the pp weak rate discussed in the previous
section, it effectively instantaneously converts deuterium to
3He, with no observable signature. Thus uncertainties in its
rate have no consequences for solar energy generation. By
comparing the pp and dðp;"Þ3He rates, one finds that the
lifetime of a deuterium nucleus in the solar core is (1 s, and
that the equilibrium abundance of deuterium relative to H is
maintained at (3$ 10%18.

However, the dðp;"Þ3He reaction plays a more prominent
role in the evolution of protostars. As a cloud of interstellar
gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106 K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
protostar increases and its observational properties (surface
luminosity and temperature) are frozen until the original
deuterium is fully consumed (Stahler, 1988). Because of the
slow evolutionary time scale, a large fraction of observed
protostars are in the d-burning phase, while only a few are
found in the earlier, cooler, rapidly evolving phase. A reliable
knowledge of the rate of dðp;"Þ3He down to a few keV (the

Gamow peak in a protostar) is of fundamental importance for
modeling protostellar evolution.

The pd reaction also plays an important role in big bang
nucleosynthesis, which begins when the early Universe has
cooled to a temperature of (100 keV. The uncertainty in the
pd reaction in the relevant energy window (25–120 keV)
propagates into uncertainties in the deuterium, 3He, and 7Li
abundances, scaling as

d

H
/ R%0:32

pd ;
3He

H
/ R0:38

pd ;
7Li

H
/ R0:59

pd ; (27)

where Rpd is the value of S12 relative to the fiducial value in

Cyburt (2004). Thus a 10% error in the pd capture rate
propagates into roughly 3.2%, 3.8%, and 5.9% uncertainties
in the light element primordial abundances, d, 3He, and 7Li,
respectively.

A. Data sets

The extensive experimental data sets for pd radiative
capture include total cross sections and spin polarization
observables at center-of-mass energies E ranging from sev-
eral tens of MeV to a few keV, covering all the relevant
astrophysical energies. In the regime E & 2 MeV (below
the deuteron breakup threshold), the relevant experimental
data include Griffiths et al. (1962, 1963), Bailey et al.
(1970), Schmid et al. (1995, 1996), Ma et al. (1997), and
Casella et al. (2002). The Griffiths et al. (1963) and Bailey
et al. (1970) low-energy data may be(15% too high because
of the use of incorrect stopping powers (Ma et al., 1997;
Schmid et al., 1995, 1996). Also, the Schmid et al. (1995),
(1996) data sets may have not propagated their energy-
dependent systematic uncertainties. In Fig. 3, the data for
S12 used for the best fit in Sec. IV.C are plotted together with
theoretical predictions of Marcucci et al. (2005). The ob-
served linear dependence of S12 on E at low energies as well
as the angular distributions of the cross section and polariza-
tion observables indicates that the dðp;"Þ3He reaction pro-
ceeds predominantly through s- and p-wave capture,
induced, respectively, by magnetic (M1) and electric (E1)
dipole transitions. The M1 transitions (proceeding through
2S1=2 and

4S3=2 pd channels) are especially interesting, as the

one-body M1 operator cannot connect the main s-state com-
ponents of the pd and 3He wave functions at low energies.
Because of this ‘‘pseudo-orthogonality,’’ only the small com-
ponents of the wave functions contribute in the impulse
approximation (IA). In contrast, as exchange current opera-
tors are not similarly hindered, their matrix elements are
exceptionally large relative to those obtained with the one-
body M1 operator. The suppression of matrix elements cal-
culated in the IA and their consequent enhancement by
exchange current contributions are a feature common to other
M1-induced processes in A ¼ 3 and 4 systems, such as the nd
and n3He radiative captures at thermal neutron energies.

B. Theoretical studies

The most extensive and recent theoretical studies of the
dðp;"Þ3He reaction at low energies have been carried out by
Marcucci et al. (2005). The calculated S12, shown in Fig. 3, is
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gas collapses on itself, the gas temperature rises to the point
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of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
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luminosity and temperature) are frozen until the original
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theoretical predictions of Marcucci et al. (2005). The ob-
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approximation (IA). In contrast, as exchange current opera-
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exceptionally large relative to those obtained with the one-
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culated in the IA and their consequent enhancement by
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M1-induced processes in A ¼ 3 and 4 systems, such as the nd
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SFII	recommended	value	(2011):	

“χEFT”	calcula)on	by	Marcucci	et	al.,	Phys.	Rev.	LeB.	(2013):	
Use	consistent	3H	decay-rate	to	constrain	consistently	axial	MEC		
(DG,	Quaglioni,	Navra,l,	PRL	2009),	and	predict	pp-fusion	rate.	

Table 3. Cumulative S- and P -wave contributions to S(0) in units of 10−23 MeV fm2. The
results labelled “χEFT(500)” and “χEFT(600)” have been obtained within the χEFT approach
with two different cutoff values, 500 and 600 MeV. The results obtained within the PMA are
also shown. The theoretical uncertainties are given in parentheses and are due to the fitting
procedure adopted for the LEC’s (or g∗A within the PMA) in the weak current.

1S0 · · · + 3P0 · · · + 3P1 · · · + 3P2

χEFT(500) 4.008(5) 4.011(5) 4.020(5) 4.030(5)
χEFT(600) 4.007(5) 4.010(5) 4.019(5) 4.029(5)

PMA 4.000(3) 4.003(3) 4.015(3) 4.033(3)

In conclusion, the χEFT results of table 3 can be summarized in the conservative range
S(0) = (4.030±0.006)×10−23 MeV fm2, with a P -wave contribution of ≃ 0.2×10−23 MeV fm2.

Finally, we show in figure 2 the energy dependence of S(E) in the energy range 2 – 100 keV,
as obtained within the χEFT approach. The S- and (S + P )-wave contributions are displayed
separately, and the theoretical uncertainty is included—the curves are in fact very narrow bands.
As expected, the P -wave contributions become significant at higher values of E. From these
results, a least-squares polynomial fit to S(E) has been performed up to order O(E2), i.e., by
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Figure 2. (Color online) Energy dependence of S(E) in the range 2 – 100 keV. The S- and
(S + P )-wave contributions are displayed separately. In the inset, S(E) is shown in the range
3–15 keV.
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Including:	p-wave	contribu,on	(+0.005%),	full	EM	(-0.0025-(-0.0075)%),	
	 	difference	between	500	and	600	MeV	cutoff	and	poten,al	models.	

Recently	Archaya	et	al	(1603.01593)	χEFT:		
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FIG. 2. (Color online). The green band indicates the spread
of S(0)-values due to variations in Tmax

Lab

used in the opti-
mization of the NNLO chiral force, as well as the propagated
statistical uncertainties of all LECs and gA, as a function of
the cuto↵ ⇤

EFT

in the �EFT. ⇤
EFT

was varied between 450
MeV and 600 MeV in steps of 25 MeV. The cuto↵ in the
current and the interaction sectors were always equal to each
other. This figure demonstrates that the S-factor is relatively
insensitive to reasonable variations in the cuto↵.

FIG. 3. (Color online). Correlation matrix of the zero-energy
S-factor (S(0)), the squared radial wave function overlap
(⇤2), and the ratio of the 2B and 1B current matrix elements
(�

2B

). We also show the correlations between theese quan-
tities and the ground state energies (E), point-proton radii
(r

pt�p

) for A = 2, 3, 4 nuclei as well as the matrix element of
the reduced axial-vector current (E1

A) of the triton �-decay
and the quadrupole moment (Q(2H)) and D-state probability
(D(2H)) of the deuteron.

tract those with the spline Jacobians extracted in this
work. A graphical representation of the relevant correla-
tions is shown in Fig. 3. This particular correlation ma-
trix is based on the NNLO interaction with ⇤

EFT

= 500
MeV and Tmax

Lab

= 290 MeV. The same pattern emerges
with any of the 42 di↵erent interactions employed in this
work. As expected from the Q-value dependence of the
phase space volume, the S-factor strongly anticorrelates
with the deuteron ground state energy. It is noteworthy

that the squared radial overlap ⇤2 of the deuteron and
relative-proton wave functions does not correlate signif-
icantly with S(0). This indicates that the dependence
of the S-factor on binding energy indeed occurs pre-
dominantly through the phase space. We also observe
that an increase in the deuteron radius would increase
the radial overlap with the proton-proton wave function.
The quadrupole moment of the deuteron and its D-state
probability anti-correlate with ⇤2. Here, it is important
to point out that our squared radial overlap only con-
tains the 1B piece of the current operator. Thus it only
measures the overlap between S-wave components. A
smaller D-state probability implies a larger S-state prob-
ability. Consequently, the anti-correlation between ⇤2

and Q(2H)/D(2H) mostly traces the same underlying S-
wave component of the deuteron wave function. Finally,
we observe a strong correlation between the strength of
the 2B current and the reduced axial-vector current of
the triton �-decay. In fact, the LEC c

D

plays a domi-
nant role for both currents. In conclusion, we quantify
all expected correlations and confirm that they emerge
in our statistical analysis.

IV. RESULTS AND DISCUSSION

We have calculated the pp-fusion S-factor using �EFT
and carried out a state-of-the-art uncertainty analysis by
employing a family of mathematically optimized chiral
potentials at NNLO with consistently renormalized cur-
rents. We focused on the threshold S-factor and have
therefore only considered initial S-wave pp scattering. To
O(↵), we obtain a threshold S-factor

S(0) = (4.081+0.024

�0.032

) ⇥ 10�23 MeV fm2 , (19)

where we combined, for simplicity, all uncertainties
by adding them in quadrature, and then taking the
min/max values of the green band in Fig 2. This error
represents all uncertainties originating from �EFT, the
computational method, and the statistical extrapolation
to obtain the threshold value. The e↵ects of higher or-
der electromagnetic contributions that are proportional
to ↵2 remains to be accounted for. These corrections
lower the threshold S-factor by about a percent [6, 7, 9].
From the energy dependence of these corrections, calcu-
lated in Ref. [6], we estimate a 0.84% reduction in S(0).
The inclusion of these electromagnetic e↵ects leaves the
uncertainties that are due to the strong interaction un-
changed, and the final result becomes

S
cor

(0) = (4.047+0.024

�0.032

) ⇥ 10�23 MeV fm2 . (20)

For comparison, the uncertainty presented here is four
times larger than the estimate reported in the pioneer-
ing �EFT calculation in Ref [9]. The comparison of the
central values, however, is not so straightforward since
their calculation includes additional terms in the cur-
rent operator involving additional LECs, namely g

4S

and
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 π/		EFT	

 π/		EFT	

Can	we	reach	precision	physics	with	 π/		EFT?		



!
Precision,	Uncertainty,	and	predictions	

M
ay
	3
1,
	2
01
6	

Ga
zit
@
RR

TF
	

7	

Role	of	 π/		EFT:	
Coherent	and	sysytema,c	(theore,cal)	uncertainty	quan,fica,on.	
Big	ques,on:	is	precision	physics	a	possible	fron,er	of	 π/		EFT?	

We	revisit	the	pp-fusion	problem	within	pionless	
EFT,	fixing	the	unknown	LEC	using	triton	decay.	



!
Weak	decays:	

M
ay
	3
1,
	2
01
6	

Ga
zit
@
RR

TF
	

8	

l l

Ini,al		
amplitude	

Final	
amplitude	

Weak	
Interac,on	

ψi J µ ψ f

J µ
± =

τ
±

2
Vµ

± − Aµ
±( ) e 

eν

ft = K

GF
2Vud

2 3H Vµ
+ 3He

2

+
fA
fV

3H Aµ
+ 3He

2⎡

⎣
⎢

⎤

⎦
⎥

pp Aµ
− 2H



!
Advantages	of	 π/	EFT	for	proton-proton	fusion:	
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1. Small	number	of	parameters.	
2. Two	NLO	π/		EFT	arrangements.	
3. A	“cheat-sheet”	in	the	electromagne,c	sector.	
4. Cutoff	independence	up	to	infinity.	



!

A	fully	perturbative	pionless	EFT	A=2,	3	calculation	
@NLO	

•  LO	Parameters:	
•  nn	and	2-np	Scakering	lengths:	3S1,	1S0.	
•  pp	scakering	length.	
•  Fine	structure	constant.	
•  Three	body	force	strength	to	prevent	Thomas	collapse.	

•  NLO	parameters:	
•  2 effec,ve	ranges.	
•  Renormaliza,ons	of	pp	and	3NF.	
•  (isospin	dependent	3NF	to	prevent	logarithmic	divergence	in	the	binding	
energy	of	3He).	

•  Weak	Interac)on:	LO	(gA	–	1	body),	NLO	(L1A	–	2	body)	
•  EM	Interac)on:	LO	(κS	,	κV)	–	1	body),	NLO	(L1	,	L2–	2	body)	
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Weak	

•  LO:	
EM	

•  LO:	
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Ini,al		
amplitude	

Final	
amplitude	

ScaBering		
operator	

7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
magnetic = e

h
L1

�
NTPA

s N
�† �

NTP i
tN

�
Bi � L2

�
NTP i

t

�† �
NTP j

t N
�
Bk + h.c

i
(95)

where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
†t) · B. (96)

Where:

L0
1 =

e

2MN


�1

2

⇢t + ⇢sp
⇢t⇢s

(p � n) + L1
MN

⇡
p
⇢t⇢s

✓
µ� 1

at

◆✓
µ� 1

as

◆�
(97)

L0
2 =

e

2MN

"
L2

2MN

⇡⇢t

✓
µ� 1

at

◆2

� (p + n)

#
(98)

In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note

36

Chiral effective field theory

Chiral EFT: low energy approach to QCD for nuclear structure energies

Approximate chiral symmetry: pion exchanges and contact interactions

Systematic expansion: nuclear forces and electroweak currents

2
N LO

N LO
3

NLO

LO

3N force 4N force2N force

N

N

e ν

N

N

e

N

π

N ν e ν

N

NN

N

Weinberg, van Kolck, Kaplan, Savage, Epelbaum, Kaiser, Meißner...

Park et al.
PRC67 055206(2003)

Short-range couplings fit
to experiment once

Javier Menéndez (JSPS / U. Tokyo) Correlations and �� decay Jyväskylä, 1 June 2015 6 / 22

(a) (b)

Figure 19: Color online) Numerical for the �np (a) and µd (b). The gray solid line is the experiential
data from [7, 8]. The dashed line is 1-body LO calculating,the long-dashed-dotted line is the numerical
results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0 and the dotted line
is the full NLO calculation with L1 and L2 set from A = 3. The red lines are the numerical results
with ⇢t = 1.765 fm, while the blue lines are numerical results after Z-parametrization with ⇢0t = 0.69/�t
(noted as Zt) and the purple line is the results which is shared for both ⇢t.

8 Triton (3H) �-decay into Helium-3 (3He)

In this section we are turning to the calculation of the matrix element of the weak reaction:

3H !3 He + e� + ⌫e. (113)

To do so we will need to define the LO and NLO bound state scattering amplitudes for
both 3H and 3He, as done in the previous sections. In additions it is essential to define the
weak interaction weak Interaction in Z⇡EFT and in particular its Hubbard-Stratonovich
transformation.

8.1 Weak Interaction in ZZ⇡EFT

The Lagrangian of the weak interaction is given by:

LWeak =
�GFp

2
lµ+j

�
µ + h.c (114)

where the lµ is the leptonic current and Jµ is the hadronic current.
The hadronic current contains two parts: polar-vector and axial-vector. The polar-

vector part:

Vµ = N †⌧
�

2
N, (115)

is conserved due to the Conserved Vector Current (CVC) which is accurate at this order
of EFT.
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The axial-vector part is �A�
µ [11]:

A�
µ =

gA
2
N †�⌧�N + L1A

�
NTPA

t N
�† �

NTP i
dN

�
(116)

where ⌧� is ⌧1� i · ⌧2 and gA and L1A are the LEC’s for weak interaction for one and two
body, respectively.

By applying the H-S transformation on eq. (116) (see Appendix A) we get that for the
sum of the dibaryon-dibaryon interaction and the dibaryon-loop interaction(see table. 1,
o-q)

A�
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2
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In addition the three nucleons system contain also a dibaryon-vertex interaction (see
table 1). In our calculation we are using the cuto↵ ⇤ as our the renormalization scale µ,
therefore the dibaryon-loop weak interaction will be at the order of O(1 + L1A⇤3) while
the dibaryon weak interaction will be at the order of O �

1
⇤ + L1A⇤2

�
. For the case that

µ ⌘ ⇤:

A�
⇤ =

gA
2
N †�⌧�N + gA
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a̧nd therefore

L1A = L1A(⇤) =
4⇡l1A
MN⇤2

, (119)

where l1A is an unknown, dimensionless constant (see [10]). In that case we will get that
the countribation to the weak decay will be independent in ⇤.

Aµeq. (118) is written up to NLO where the first term which donate the one-body
interaction is in LO and the other terms which donate the one-body interactions are in
NLO. Therefore to maintain consistency, the one body interaction will coupled to the
NLO �0S and to the NLO propagators, while the one body interaction will coupled to
the LO �0S and to the LO propagators.

8.2 Triton (3H) �-decay in ZZ⇡EFT

The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the cross section of Triton (3H) �-decay:

3H !3 He + e� + ⌫e (120)

This decay is shown in Figure 20. The left hand side (LHS) of the diagram is 3H represents
by �T,S(q, E3H) while the left hand side (RHS) is the 3He represents �T,S,P (q, E3He). The
half life time of 3H � decay can be expressed as:

T1/2 =
K/GV

fvhF i2 + fAg2AhGT i2 . (121)
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
magnetic = e

h
L1

�
NTPA

s N
�† �

NTP i
tN

�
Bi � L2

�
NTP i

t

�† �
NTP j

t N
�
Bk + h.c

i
(95)

where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
†t) · B. (96)

Where:

L0
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
magnetic = e

h
L1

�
NTPA

s N
�† �

NTP i
tN

�
Bi � L2

�
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t N
�
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i
(95)

where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
†t) · B. (96)

Where:
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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Figure 19: Color online) Numerical for the �np (a) and µd (b). The gray solid line is the experiential
data from [7, 8]. The dashed line is 1-body LO calculating,the long-dashed-dotted line is the numerical
results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0 and the dotted line
is the full NLO calculation with L1 and L2 set from A = 3. The red lines are the numerical results
with ⇢t = 1.765 fm, while the blue lines are numerical results after Z-parametrization with ⇢0t = 0.69/�t
(noted as Zt) and the purple line is the results which is shared for both ⇢t.

8 Triton (3H) �-decay into Helium-3 (3He)

In this section we are turning to the calculation of the matrix element of the weak reaction:

3H !3 He + e� + ⌫e. (113)

To do so we will need to define the LO and NLO bound state scattering amplitudes for
both 3H and 3He, as done in the previous sections. In additions it is essential to define the
weak interaction weak Interaction in Z⇡EFT and in particular its Hubbard-Stratonovich
transformation.

8.1 Weak Interaction in ZZ⇡EFT

The Lagrangian of the weak interaction is given by:

LWeak =
�GFp

2
lµ+j

�
µ + h.c (114)

where the lµ is the leptonic current and Jµ is the hadronic current.
The hadronic current contains two parts: polar-vector and axial-vector. The polar-

vector part:

Vµ = N †⌧
�

2
N, (115)

is conserved due to the Conserved Vector Current (CVC) which is accurate at this order
of EFT.
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The axial-vector part is �A�
µ [11]:

A�
µ =

gA
2
N †�⌧�N + L1A

�
NTPA

t N
�† �

NTP i
dN

�
(116)

where ⌧� is ⌧1� i · ⌧2 and gA and L1A are the LEC’s for weak interaction for one and two
body, respectively.

By applying the H-S transformation on eq. (116) (see Appendix A) we get that for the
sum of the dibaryon-dibaryon interaction and the dibaryon-loop interaction(see table. 1,
o-q)

A�
µ =
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2
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In addition the three nucleons system contain also a dibaryon-vertex interaction (see
table 1). In our calculation we are using the cuto↵ ⇤ as our the renormalization scale µ,
therefore the dibaryon-loop weak interaction will be at the order of O(1 + L1A⇤3) while
the dibaryon weak interaction will be at the order of O �

1
⇤ + L1A⇤2

�
. For the case that

µ ⌘ ⇤:

A�
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2
N †�⌧�N + gA


1

2

⇢t + ⇢sp
⇢t⇢s

� L1A
1

2⇡
p
⇢t⇢sgA

✓
⇤� 1

at

◆✓
⇤� 1

as

◆� �
t†s+ s†t

�
.

(118)
a̧nd therefore

L1A = L1A(⇤) =
4⇡l1A
MN⇤2

, (119)

where l1A is an unknown, dimensionless constant (see [10]). In that case we will get that
the countribation to the weak decay will be independent in ⇤.

Aµeq. (118) is written up to NLO where the first term which donate the one-body
interaction is in LO and the other terms which donate the one-body interactions are in
NLO. Therefore to maintain consistency, the one body interaction will coupled to the
NLO �0S and to the NLO propagators, while the one body interaction will coupled to
the LO �0S and to the LO propagators.

8.2 Triton (3H) �-decay in ZZ⇡EFT

The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the cross section of Triton (3H) �-decay:

3H !3 He + e� + ⌫e (120)

This decay is shown in Figure 20. The left hand side (LHS) of the diagram is 3H represents
by �T,S(q, E3H) while the left hand side (RHS) is the 3He represents �T,S,P (q, E3He). The
half life time of 3H � decay can be expressed as:

T1/2 =
K/GV

fvhF i2 + fAg2AhGT i2 . (121)
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
magnetic = e

h
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�
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
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†t) · B. (96)
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
magnetic = e
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0
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†t) · B. (96)

Where:
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
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.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:
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magnetic =
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:
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magnetic =
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moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
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The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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Figure 19: Color online) Numerical for the �np (a) and µd (b). The gray solid line is the experiential
data from [7, 8]. The dashed line is 1-body LO calculating,the long-dashed-dotted line is the numerical
results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0 and the dotted line
is the full NLO calculation with L1 and L2 set from A = 3. The red lines are the numerical results
with ⇢t = 1.765 fm, while the blue lines are numerical results after Z-parametrization with ⇢0t = 0.69/�t
(noted as Zt) and the purple line is the results which is shared for both ⇢t.

8 Triton (3H) �-decay into Helium-3 (3He)

In this section we are turning to the calculation of the matrix element of the weak reaction:

3H !3 He + e� + ⌫e. (113)

To do so we will need to define the LO and NLO bound state scattering amplitudes for
both 3H and 3He, as done in the previous sections. In additions it is essential to define the
weak interaction weak Interaction in Z⇡EFT and in particular its Hubbard-Stratonovich
transformation.

8.1 Weak Interaction in ZZ⇡EFT

The Lagrangian of the weak interaction is given by:

LWeak =
�GFp

2
lµ+j

�
µ + h.c (114)

where the lµ is the leptonic current and Jµ is the hadronic current.
The hadronic current contains two parts: polar-vector and axial-vector. The polar-

vector part:

Vµ = N †⌧
�

2
N, (115)

is conserved due to the Conserved Vector Current (CVC) which is accurate at this order
of EFT.
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The axial-vector part is �A�
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where ⌧� is ⌧1� i · ⌧2 and gA and L1A are the LEC’s for weak interaction for one and two
body, respectively.

By applying the H-S transformation on eq. (116) (see Appendix A) we get that for the
sum of the dibaryon-dibaryon interaction and the dibaryon-loop interaction(see table. 1,
o-q)
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In addition the three nucleons system contain also a dibaryon-vertex interaction (see
table 1). In our calculation we are using the cuto↵ ⇤ as our the renormalization scale µ,
therefore the dibaryon-loop weak interaction will be at the order of O(1 + L1A⇤3) while
the dibaryon weak interaction will be at the order of O �

1
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�
. For the case that
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a̧nd therefore

L1A = L1A(⇤) =
4⇡l1A
MN⇤2

, (119)

where l1A is an unknown, dimensionless constant (see [10]). In that case we will get that
the countribation to the weak decay will be independent in ⇤.

Aµeq. (118) is written up to NLO where the first term which donate the one-body
interaction is in LO and the other terms which donate the one-body interactions are in
NLO. Therefore to maintain consistency, the one body interaction will coupled to the
NLO �0S and to the NLO propagators, while the one body interaction will coupled to
the LO �0S and to the LO propagators.

8.2 Triton (3H) �-decay in ZZ⇡EFT

The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the cross section of Triton (3H) �-decay:

3H !3 He + e� + ⌫e (120)

This decay is shown in Figure 20. The left hand side (LHS) of the diagram is 3H represents
by �T,S(q, E3H) while the left hand side (RHS) is the 3He represents �T,S,P (q, E3He). The
half life time of 3H � decay can be expressed as:

T1/2 =
K/GV

fvhF i2 + fAg2AhGT i2 . (121)
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where l1A is an unknown, dimensionless constant (see [10]). In that case we will get that
the countribation to the weak decay will be independent in ⇤.

Aµeq. (118) is written up to NLO where the first term which donate the one-body
interaction is in LO and the other terms which donate the one-body interactions are in
NLO. Therefore to maintain consistency, the one body interaction will coupled to the
NLO �0S and to the NLO propagators, while the one body interaction will coupled to
the LO �0S and to the LO propagators.

8.2 Triton (3H) �-decay in ZZ⇡EFT

The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the cross section of Triton (3H) �-decay:
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:
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The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:
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magnetic =
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note

36



!
Advantages	of	 π/	EFT	for	proton-proton	fusion:	
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1. Small	number	of	parameters.	
2. Two	NLO	π/	EFT	arrangements.	
3. A	“cheat-sheet”	in	the	electromagne,c	sector.	
4. Cutoff	independence	up	to	infinity.	



!
The	role	of	the	deuteron	tail	

•  Many	low	energy	reac,ons	depend	on	deuteron	normaliza,on.	

•  One	has	a	choice	of	rearranging	the	expansion:	

•  rho-parameteriza,on:	

•  Z(ed)-parameteriza,on:		
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Zd =
1

1−γρ
≈1+γρ + γρ( )

2
+ ...

Zd =
1

1−γρ
≈1+ (Zd −1)+ 0       +...

LO	 NLO	 N2LO+…	

Both	are	valid	rearrangements!		
Z-parameteriza,on	has	quicker	convergence,	especially	
for	observables	sensi,ve	to	the	deuteron	tail.	

Phillips,	Rupak,	Savage,	Phys.	Lek.	B473,	209	(2000)	
Grießhammer,	Nucl.	Phys.	A744,	192	(2004)	

that runs with the cuto↵ ⇤.

Figure 4: The Faddeev equation for N-dibaryon scattering with a 3-body force. Double line is a
propagator of the two intermediate auxiliary fields d and t, denoted by D; K: is a propagator of the
exchanged nucleon; H(⇤):

Formally, the 3-body force term is obtained by adding [1]:

L3 = �MN
H(⇤)

⇤2

�
y2tN

† �~t · ~��N+ y2sN
† (~s · ~⌧)† · (~s · ~⌧)N+

1

3
ytys

h
N † �~t · ~��† (~s · ~⌧)N

i◆

(24)

to the Lagrangian eq. (9).
eq. (24) represents a contact 3-body force written in terms of dibaryon and nucleon

fields (see Figure 4).

2.6 The deuteron normalization

The deuteron normalization is given by [38]:

Z�1
d = i

@

@p0

1

iDt(p0, p)

���
p0=

�2t
MN

,p=0
(25)

For the full propagator:

Zd =
1

1� �t⇢t
= 1|{z}

LO

+ �t⇢t|{z}
NLO

+(�t⇢t)
2

| {z }
N2LO

+(�t⇢t)
3

| {z }
N3LO

+... = 1.69 (26)

and the ERE coe�cient Ct
2 [23] is defined by:

Ct
2 = 2⇡

�
ZNLO

d � 1
�

MN�t (µ� �t)
2 (27)

which is equivalent to Q expansion around p = 0
By using the e↵ective range expansion (ERE) parametrization we need to insures

that the deuteron (spin-triplet, T ) pole residue Zd =
1

1��⇢t
= 1.69 is given correctly in an

expansion of the e↵ective range about the deuteron pole. By Using the Z-parametrization,
instead of the convergence displayed in eq. (26) we now have, by explicit construction
[10,43]:

Zd = 1|{z}
LO

+Zd � 1| {z }
NLO

+ 0|{z}
N2LO

+ 0|{z}
N3LO

+... = 1.69 (28)

and therefore:

Ct
2 =

2⇡
�
ZNLO

d � 1
�

MN�t (µ� �t)
2 = 2⇡

0.69

MN�t (µ� �t)
2 . (29)

In the following sections we will use both normalizations eqs. (26) and (28) in order to
find the better agreement with the experimental data.

12
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1. Small	number	of	parameters.	
2. Two	NLO	π/	EFT	arrangements.	
3. A	“cheat-sheet”	in	the	electromagne,c	sector.	
4. Cutoff	independence	up	to	infinity.	
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17	
µd µ 3H

µ 3Hen + p→ d + γ

3H→3 He + e− +νe

e eν

p + p→ d +νe + e
+

e eν

n→ p + e− +νe

e 

νe

µ p µn

Weak	observables	

EM	observables	

Use	the	same	strategy	in	both	cases:	fix	probe	LECs	at	A=3	and	predict	A=2.	
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(a) (b)

Figure 16: (Color online) Numerical for the 3-nucleon magnetic moments: 3H (a) and 3He (b). The
grey solid line is the experiential data from [7, 8]. The dashed line is 1-body LO calculating,the dotted
line is the numerical results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0.
The red lines are the numerical results with ⇢t = 1.765 fm, while the blue lines are numerical results
after Z-parametrization with ⇢0t = 0.69/�t, (noted as Zt).

where Y is summation of all the diagrams from Fig. 18 and p=0.0034 MeV, is the
momentum of each incoming nucleon in the center-of-mass frame [44,66].

Y =

r
⇡

�t

p
Zd

MN
(p � n)

✓
1

�t
� as

◆
+

as
4
(⇢t + ⇢s)� as

MNL1

2⇡ (p � n)

✓
µ� 1

at

◆✓
µ� 1

as

◆�
.

(104)

Up to NLO:

Y =

p
⇡as

MN
p
�t

(p � n)

✓
1� 1

�tas

◆✓
1 +

1

2
�t⇢t

◆
�

�t
4
(⇢t + ⇢s) + �tL1

MN

2⇡ (p � n)

✓
µ� 1

at

◆✓
µ� 1

as

◆�
,

(105)

with ZLO
d = 1 and ZNLO

d = (1 + �⇢t) [43, 65], the total cross section (eq. (103)) is given
by:

�np =
⇡↵�5

t a
2
s (p � n)

2

M4
Np

✓
1� 1

�tas

◆✓
1 +

1

2
�t⇢t

◆
�

�t
4
(⇢t + ⇢s) +

�tMN

2⇡ (p � n)
L1

✓
µ� 1

at

◆✓
µ� 1

as

◆�2
,

(106)

The diagrams for the deuteron magnetic moment (up to NLO) are like the diagrams
showing in Fig. 18 where the n and p are in bound state. The magnet moment of the

39

•  All	NLO	contribu,ons	of	the	same	order	of	magnitude	5-10%	–		
Natural	NLO	contribu,ons	–	useful	for	theore,cal	error	es,mates!	

•  No	effect	due	to	Zed-Rho	parameteriza,ons.	
•  Cutoff	independence.	
•  When	L1	and	L2	are	fixed	from	A=2	observables:	

3H	 3He	

µ 3H
LO = 3.09 ±Zd

0.01 µ 3He
LO = −2.455±Zd

0.005

µ 3H
NLO = 3.005±Zd

0.01 µ 3He
NLO = −2.13±Zd

0.01

µ 3H
exp = 2.9789... µ 3He

exp = −2.1276...

LO:	

NLO:	

exp:	
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(a) (b)

Figure 16: (Color online) Numerical for the 3-nucleon magnetic moments: 3H (a) and 3He (b). The
grey solid line is the experiential data from [7, 8]. The dashed line is 1-body LO calculating,the dotted
line is the numerical results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0.
The red lines are the numerical results with ⇢t = 1.765 fm, while the blue lines are numerical results
after Z-parametrization with ⇢0t = 0.69/�t, (noted as Zt).

where Y is summation of all the diagrams from Fig. 18 and p=0.0034 MeV, is the
momentum of each incoming nucleon in the center-of-mass frame [44,66].

Y =

r
⇡

�t

p
Zd

MN
(p � n)

✓
1

�t
� as

◆
+

as
4
(⇢t + ⇢s)� as

MNL1

2⇡ (p � n)

✓
µ� 1

at

◆✓
µ� 1

as

◆�
.

(104)

Up to NLO:

Y =

p
⇡as
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(105)

with ZLO
d = 1 and ZNLO

d = (1 + �⇢t) [43, 65], the total cross section (eq. (103)) is given
by:

�np =
⇡↵�5

t a
2
s (p � n)

2

M4
Np

✓
1� 1
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◆✓
1 +

1

2
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(106)

The diagrams for the deuteron magnetic moment (up to NLO) are like the diagrams
showing in Fig. 18 where the n and p are in bound state. The magnet moment of the

39

•  All	NLO	contribu,ons	of	the	same	order	of	magnitude	5-10%	–		
Natural	NLO	contribu,ons	–	useful	for	theore,cal	error	es,mates!	

•  No	effect	due	to	Zed-Rho	parameteriza,ons.	
•  Cutoff	independence.	
•  When	L1	and	L2	are	fixed	from	A=3	magne*c	moments:	

3H	 3He	

µd
LO = 0.8798 σ np

LO = 298.2mb

µd
NLO = 0.8617±Zd

0.0002 σ np
NLO = 335 Zd( )− 320 ρ( )

µd
exp = 0.8574... σ np

exp = 334.2 ± 0.5mb...

LO:	

NLO:	

exp:	
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Ab initio Calculation of the np → dγ Radiative Capture Process
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np → dγ, and the photo-disintegration
processes γð"Þd → np. In nuclear potential models, such contributions are described by phenomenological
meson-exchange currents, while in the present work, they are determined directly from the quark and gluon
interactions of QCD. Calculations of neutron-proton energy levels inmultiple backgroundmagnetic fields are
performed at twovalues of the quarkmasses, corresponding to pionmasses ofmπ ∼ 450 and 806MeV, and are
combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy
inelastic processes. At mπ ∼ 806 MeV, using only lattice QCD inputs, a cross section σ806 MeV ∼ 17 mb is
found at an incident neutron speed of v ¼ 2; 200 m=s. Extrapolating the short-distance contribution to the
physical pion mass and combining the result with phenomenological scattering information and one-body

couplings, a cross section of σlqcdðnp → dγÞ ¼ 334.9ðþ5.2
−5.4 Þ mb is obtained at the same incident neutron

speed, consistent with the experimental value of σexptðnp → dγÞ ¼ 334.2ð0.5Þ mb.

DOI: 10.1103/PhysRevLett.115.132001 PACS numbers: 12.38.Gc, 11.15.Ha, 13.40.Gp

The radiative capture process, np → dγ, plays a critical
role in big bang nucleosynthesis (BBN) as it is the starting
point for the chain of reactions that form most of the light
nuclei in the cosmos. Studies of radiative capture [1–3], and
the inverse processes of deuteron electro- and photodisinte-
gration, γð"Þd → np [4–7], have constrained these cross
sections and have also provided critical insights into the
interactions between nucleons and photons. They conclu-
sively show the importance of non-nucleonic degrees of
freedom in nuclei, which arise from meson-exchange cur-
rents (MECs) in the context of nuclear potential models
[8,9]. Nevertheless, in the energy range relevant for BBN,
experimental investigations are challenging [10]. For the
analogous weak interactions of multinucleon systems, con-
siderably less is known from experiment but these processes
are equally important. The weak two-nucleon interactions
currently contribute the largest uncertainty in calculations
of the rate for proton-proton fusion in the Sun [11–17], and
in neutrino-disintegration of the deuteron [18], which is a

critical process needed to disentangle solar neutrino
oscillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determinations
from the underlying theory of strong interaction, quantum
chromodynamics (QCD), are fundamental to future theo-
retical progress. Such determinations are also of significant
phenomenological importance for calibrating long-baseline
neutrino experiments and for investigations of double
beta decay in nuclei. In this Letter, we take the initial steps
towards meeting this challenge and present the first lattice
QCD (LQCD) calculations of the np → dγ process. The
results are in good agreement with experiment and show
that QCD calculations of the less well-determined electro-
weak processes involving light nuclei are within reach.
Similarly, the present calculations open the way for QCD
studies of light nuclear matrix elements of scalar [19]
(and other) currents relevant for dark matter direct detection
experiments and other searches for physics beyond the
Standard Model.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
!

κ1γ20
γ20 þ jpj2

"
γ0 −

1

a1
þ 1

2
r1jpj2

#
þ γ20

2
l1

$
; ð2Þ

where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
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κ1γ20
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"
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1

a1
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2
r1jpj2

#
þ γ20

2
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$
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where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np → dγ, and the photo-disintegration
processes γð"Þd → np. In nuclear potential models, such contributions are described by phenomenological
meson-exchange currents, while in the present work, they are determined directly from the quark and gluon
interactions of QCD. Calculations of neutron-proton energy levels inmultiple backgroundmagnetic fields are
performed at twovalues of the quarkmasses, corresponding to pionmasses ofmπ ∼ 450 and 806MeV, and are
combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy
inelastic processes. At mπ ∼ 806 MeV, using only lattice QCD inputs, a cross section σ806 MeV ∼ 17 mb is
found at an incident neutron speed of v ¼ 2; 200 m=s. Extrapolating the short-distance contribution to the
physical pion mass and combining the result with phenomenological scattering information and one-body

couplings, a cross section of σlqcdðnp → dγÞ ¼ 334.9ðþ5.2
−5.4 Þ mb is obtained at the same incident neutron

speed, consistent with the experimental value of σexptðnp → dγÞ ¼ 334.2ð0.5Þ mb.

DOI: 10.1103/PhysRevLett.115.132001 PACS numbers: 12.38.Gc, 11.15.Ha, 13.40.Gp

The radiative capture process, np → dγ, plays a critical
role in big bang nucleosynthesis (BBN) as it is the starting
point for the chain of reactions that form most of the light
nuclei in the cosmos. Studies of radiative capture [1–3], and
the inverse processes of deuteron electro- and photodisinte-
gration, γð"Þd → np [4–7], have constrained these cross
sections and have also provided critical insights into the
interactions between nucleons and photons. They conclu-
sively show the importance of non-nucleonic degrees of
freedom in nuclei, which arise from meson-exchange cur-
rents (MECs) in the context of nuclear potential models
[8,9]. Nevertheless, in the energy range relevant for BBN,
experimental investigations are challenging [10]. For the
analogous weak interactions of multinucleon systems, con-
siderably less is known from experiment but these processes
are equally important. The weak two-nucleon interactions
currently contribute the largest uncertainty in calculations
of the rate for proton-proton fusion in the Sun [11–17], and
in neutrino-disintegration of the deuteron [18], which is a

critical process needed to disentangle solar neutrino
oscillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determinations
from the underlying theory of strong interaction, quantum
chromodynamics (QCD), are fundamental to future theo-
retical progress. Such determinations are also of significant
phenomenological importance for calibrating long-baseline
neutrino experiments and for investigations of double
beta decay in nuclei. In this Letter, we take the initial steps
towards meeting this challenge and present the first lattice
QCD (LQCD) calculations of the np → dγ process. The
results are in good agreement with experiment and show
that QCD calculations of the less well-determined electro-
weak processes involving light nuclei are within reach.
Similarly, the present calculations open the way for QCD
studies of light nuclear matrix elements of scalar [19]
(and other) currents relevant for dark matter direct detection
experiments and other searches for physics beyond the
Standard Model.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]
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Zd
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2
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where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]
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2
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where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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the probability distribution functions of L
1

determined
by the field-strength dependence fits at each pion mass.
The two forms of extrapolation yield consistent values
at the physical point, with the central value and uncer-
tainties determined from the 0.17, 0.50 and 0.83 quan-
tiles of the combination of the two projected probabil-
ity distribution functions. After this extrapolation, the

value L

lqcd

1

= 0.285( +63
�60 ) nNM is found at the physical

pion mass, where the uncertainty incorporates statisti-
cal uncertainties, correlator fitting uncertainties, field-
strength dependence fitting uncertainties, and the uncer-
tainties in the mass extrapolation. This leads to a value
l

lqcd

1

= �4.48( +16
�15 ) fm. Future calculations with lighter

quark masses will reduce both the statistical and system-
atic uncertainties associated with L

1

.
The cross section for np ! d� has been precisely mea-

sured in experiments at an incident neutron speed of
v = 2, 200 m/s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding en-
ergy and 1

S

0

scattering parameters, the experimentally
determined nucleon isovector magnetic moment, and the
above extrapolated LQCD value of llqcd

1

, leads to a cross
section at v = 2, 200 m/s of

�

lqcd = 332.4( +5.4
�4.7 ) mb , (9)

which is consistent with the experimental value of �expt =
334.2(0.5) mb [1] within uncertainties (see also, Ref. [56]).
As in the phenomenological determination, the two-body
contributions are O(10%). At the quark masses where
the lattice calculations are performed, the cross-sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
m

⇡

⇠ 806 MeV, the scattering parameters, binding en-
ergy and magnetic moments have been determined previ-
ously [33, 39, 40] and we can predict the scattering cross
section using only lattice QCD inputs, with a median
value �

806 MeV ⇠ 5 mb at v = 2, 200 m/s.1

Summary: Lattice QCD calculations have been used
to determine the short-distance two-nucleon interactions
with the electromagnetic field (meson-exchange currents
in the context of nuclear potential models) that make sig-
nificant contributions to the low-energy cross-sections for
np ! d� and �

(⇤)
d ! np. This was facilitated by the pio-

nless e↵ective field theory which provides a clean separa-
tion of long-distance and short-distance e↵ects along with
a concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results
to the physical pion mass is in agreement with the ex-
perimental determinations of the np ! d� cross-section,
within the uncertainties of the calculation and of the ex-
periment. Calculations were performed at a single lattice

1 Propagation of the uncertainties in the required inputs leads to
a highly non-Gaussian distribution of �806 MeV [35].

spacing and volume, introducing systematic uncertainties
in L

1

that are expected to be small in comparison to our
other uncertainties, O(a2⇤2

QCD

, e

�m

⇡

L

, e

��0L) . 4%. A
more complete study, and a reduction of the uncertainties
of this cross-section will require additional calculations at
smaller lattice spacings and larger volumes, along with
calculations at smaller quark masses.
The present calculation demonstrates the power of lat-

tice QCD methods to address complex processes of im-
portance to nuclear physics directly from the Standard
Model. The methods that are used are equally applica-
ble to weak processes such as pp ! de

+

⌫, ⌫d ! ppe

+,
⌫d ! ⌫d, and ⌫d ! ⌫np, as well as to higher-body tran-
sitions. Background field techniques will also enable the
extraction of nuclear matrix elements of other currents
relevant for searches for physics beyond the Standard
Model. Extensions of our studies to larger systems are
currently under consideration, and calculations in back-
ground axial-vector fields necessary to address weak in-
teraction processes are under way. As this technique has
successfully recovered the short-distance contributions to
np ! d�, it also seems likely that it can be generalized
to the calculation of parity-violating observables in this
process resulting from weak interactions, or from physics
beyond the Standard Model (see Ref. [57] for a review).
Finally, the present work reinforces the utility of com-
bining lattice QCD calculations with low-energy e↵ective
field theories describing multi-nucleon systems [58].
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np → dγ, and the photo-disintegration
processes γð"Þd → np. In nuclear potential models, such contributions are described by phenomenological
meson-exchange currents, while in the present work, they are determined directly from the quark and gluon
interactions of QCD. Calculations of neutron-proton energy levels inmultiple backgroundmagnetic fields are
performed at twovalues of the quarkmasses, corresponding to pionmasses ofmπ ∼ 450 and 806MeV, and are
combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy
inelastic processes. At mπ ∼ 806 MeV, using only lattice QCD inputs, a cross section σ806 MeV ∼ 17 mb is
found at an incident neutron speed of v ¼ 2; 200 m=s. Extrapolating the short-distance contribution to the
physical pion mass and combining the result with phenomenological scattering information and one-body

couplings, a cross section of σlqcdðnp → dγÞ ¼ 334.9ðþ5.2
−5.4 Þ mb is obtained at the same incident neutron

speed, consistent with the experimental value of σexptðnp → dγÞ ¼ 334.2ð0.5Þ mb.

DOI: 10.1103/PhysRevLett.115.132001 PACS numbers: 12.38.Gc, 11.15.Ha, 13.40.Gp

The radiative capture process, np → dγ, plays a critical
role in big bang nucleosynthesis (BBN) as it is the starting
point for the chain of reactions that form most of the light
nuclei in the cosmos. Studies of radiative capture [1–3], and
the inverse processes of deuteron electro- and photodisinte-
gration, γð"Þd → np [4–7], have constrained these cross
sections and have also provided critical insights into the
interactions between nucleons and photons. They conclu-
sively show the importance of non-nucleonic degrees of
freedom in nuclei, which arise from meson-exchange cur-
rents (MECs) in the context of nuclear potential models
[8,9]. Nevertheless, in the energy range relevant for BBN,
experimental investigations are challenging [10]. For the
analogous weak interactions of multinucleon systems, con-
siderably less is known from experiment but these processes
are equally important. The weak two-nucleon interactions
currently contribute the largest uncertainty in calculations
of the rate for proton-proton fusion in the Sun [11–17], and
in neutrino-disintegration of the deuteron [18], which is a

critical process needed to disentangle solar neutrino
oscillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determinations
from the underlying theory of strong interaction, quantum
chromodynamics (QCD), are fundamental to future theo-
retical progress. Such determinations are also of significant
phenomenological importance for calibrating long-baseline
neutrino experiments and for investigations of double
beta decay in nuclei. In this Letter, we take the initial steps
towards meeting this challenge and present the first lattice
QCD (LQCD) calculations of the np → dγ process. The
results are in good agreement with experiment and show
that QCD calculations of the less well-determined electro-
weak processes involving light nuclei are within reach.
Similarly, the present calculations open the way for QCD
studies of light nuclear matrix elements of scalar [19]
(and other) currents relevant for dark matter direct detection
experiments and other searches for physics beyond the
Standard Model.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
!

κ1γ20
γ20 þ jpj2

"
γ0 −

1

a1
þ 1

2
r1jpj2

#
þ γ20

2
l1

$
; ð2Þ

where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link

PRL 115, 132001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

132001-2

their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
!

κ1γ20
γ20 þ jpj2

"
γ0 −

1

a1
þ 1

2
r1jpj2

#
þ γ20

2
l1

$
; ð2Þ

where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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the probability distribution functions of L
1

determined
by the field-strength dependence fits at each pion mass.
The two forms of extrapolation yield consistent values
at the physical point, with the central value and uncer-
tainties determined from the 0.17, 0.50 and 0.83 quan-
tiles of the combination of the two projected probabil-
ity distribution functions. After this extrapolation, the

value L

lqcd

1

= 0.285( +63
�60 ) nNM is found at the physical

pion mass, where the uncertainty incorporates statisti-
cal uncertainties, correlator fitting uncertainties, field-
strength dependence fitting uncertainties, and the uncer-
tainties in the mass extrapolation. This leads to a value
l

lqcd

1

= �4.48( +16
�15 ) fm. Future calculations with lighter

quark masses will reduce both the statistical and system-
atic uncertainties associated with L

1

.
The cross section for np ! d� has been precisely mea-

sured in experiments at an incident neutron speed of
v = 2, 200 m/s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding en-
ergy and 1

S

0

scattering parameters, the experimentally
determined nucleon isovector magnetic moment, and the
above extrapolated LQCD value of llqcd

1

, leads to a cross
section at v = 2, 200 m/s of

�

lqcd = 332.4( +5.4
�4.7 ) mb , (9)

which is consistent with the experimental value of �expt =
334.2(0.5) mb [1] within uncertainties (see also, Ref. [56]).
As in the phenomenological determination, the two-body
contributions are O(10%). At the quark masses where
the lattice calculations are performed, the cross-sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
m

⇡

⇠ 806 MeV, the scattering parameters, binding en-
ergy and magnetic moments have been determined previ-
ously [33, 39, 40] and we can predict the scattering cross
section using only lattice QCD inputs, with a median
value �

806 MeV ⇠ 5 mb at v = 2, 200 m/s.1

Summary: Lattice QCD calculations have been used
to determine the short-distance two-nucleon interactions
with the electromagnetic field (meson-exchange currents
in the context of nuclear potential models) that make sig-
nificant contributions to the low-energy cross-sections for
np ! d� and �

(⇤)
d ! np. This was facilitated by the pio-

nless e↵ective field theory which provides a clean separa-
tion of long-distance and short-distance e↵ects along with
a concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results
to the physical pion mass is in agreement with the ex-
perimental determinations of the np ! d� cross-section,
within the uncertainties of the calculation and of the ex-
periment. Calculations were performed at a single lattice

1 Propagation of the uncertainties in the required inputs leads to
a highly non-Gaussian distribution of �806 MeV [35].

spacing and volume, introducing systematic uncertainties
in L

1

that are expected to be small in comparison to our
other uncertainties, O(a2⇤2

QCD

, e

�m

⇡

L

, e

��0L) . 4%. A
more complete study, and a reduction of the uncertainties
of this cross-section will require additional calculations at
smaller lattice spacings and larger volumes, along with
calculations at smaller quark masses.
The present calculation demonstrates the power of lat-

tice QCD methods to address complex processes of im-
portance to nuclear physics directly from the Standard
Model. The methods that are used are equally applica-
ble to weak processes such as pp ! de

+

⌫, ⌫d ! ppe

+,
⌫d ! ⌫d, and ⌫d ! ⌫np, as well as to higher-body tran-
sitions. Background field techniques will also enable the
extraction of nuclear matrix elements of other currents
relevant for searches for physics beyond the Standard
Model. Extensions of our studies to larger systems are
currently under consideration, and calculations in back-
ground axial-vector fields necessary to address weak in-
teraction processes are under way. As this technique has
successfully recovered the short-distance contributions to
np ! d�, it also seems likely that it can be generalized
to the calculation of parity-violating observables in this
process resulting from weak interactions, or from physics
beyond the Standard Model (see Ref. [57] for a review).
Finally, the present work reinforces the utility of com-
bining lattice QCD calculations with low-energy e↵ective
field theories describing multi-nucleon systems [58].

We are grateful to Z. Davoudi for discussions and
comments. Calculations were performed using compu-
tational resources provided by the Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant num-
ber OCI-1053575, NERSC (supported by U.S. Depart-
ment of Energy Grant Number DE-AC02-05CH11231),
and by the USQCD collaboration. This research used
resources at the Oak Ridge Leadership Computing Fa-
cility at the Oak Ridge National Laboratory, which
is supported by the O�ce of Science of the U.S. De-
partment of Energy under Contract No. DE-AC05-
00OR22725. Parts of the calculations made use of the
chroma software suite [59]. SRB was partially supported
by NSF continuing grant PHY1206498 and by DOE
grant DOE DE-SC0013477. EC was supported by DOE
SciDAC grant DE-SC0010337-ER42045. WD was sup-
ported by the U.S. Department of Energy Early Career
Research Award DE-SC0010495. KO was supported by
the U.S. Department of Energy through Grant Number
DE- FG02-04ER41302 and through Grant Number DE-
AC05-06OR23177 under which JSA operates the Thomas
Je↵erson National Accelerator Facility. The work of AP
was supported by the contract FIS2011-24154 from MEC
(Spain) and FEDER. MJS were supported by DOE grant
No. DE-FG02-00ER41132. BCT was supported in part
by a joint City College of New York-RIKEN/Brookhaven



!
Lattice	QCD	calculation	of		l1	

M
ay
	3
1,
	2
01
6	

Ga
zit
@
RR

TF
	

25	

Ab initio Calculation of the np → dγ Radiative Capture Process

Silas R. Beane,1 Emmanuel Chang,2 William Detmold,3 Kostas Orginos,4,5 Assumpta Parreño,6

Martin J. Savage,2 and Brian C. Tiburzi7,8,9

(NPLQCD Collaboration)

1Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195, USA
2Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1560, USA

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA

5Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
6Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos,

Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain
7Department of Physics, The City College of New York, New York, New York 10031, USA

8Graduate School and University Center, The City University of New York, New York, New York 10016, USA
9RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 25 June 2015; revised manuscript received 14 August 2015; published 24 September 2015)

Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np → dγ, and the photo-disintegration
processes γð"Þd → np. In nuclear potential models, such contributions are described by phenomenological
meson-exchange currents, while in the present work, they are determined directly from the quark and gluon
interactions of QCD. Calculations of neutron-proton energy levels inmultiple backgroundmagnetic fields are
performed at twovalues of the quarkmasses, corresponding to pionmasses ofmπ ∼ 450 and 806MeV, and are
combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy
inelastic processes. At mπ ∼ 806 MeV, using only lattice QCD inputs, a cross section σ806 MeV ∼ 17 mb is
found at an incident neutron speed of v ¼ 2; 200 m=s. Extrapolating the short-distance contribution to the
physical pion mass and combining the result with phenomenological scattering information and one-body

couplings, a cross section of σlqcdðnp → dγÞ ¼ 334.9ðþ5.2
−5.4 Þ mb is obtained at the same incident neutron

speed, consistent with the experimental value of σexptðnp → dγÞ ¼ 334.2ð0.5Þ mb.

DOI: 10.1103/PhysRevLett.115.132001 PACS numbers: 12.38.Gc, 11.15.Ha, 13.40.Gp

The radiative capture process, np → dγ, plays a critical
role in big bang nucleosynthesis (BBN) as it is the starting
point for the chain of reactions that form most of the light
nuclei in the cosmos. Studies of radiative capture [1–3], and
the inverse processes of deuteron electro- and photodisinte-
gration, γð"Þd → np [4–7], have constrained these cross
sections and have also provided critical insights into the
interactions between nucleons and photons. They conclu-
sively show the importance of non-nucleonic degrees of
freedom in nuclei, which arise from meson-exchange cur-
rents (MECs) in the context of nuclear potential models
[8,9]. Nevertheless, in the energy range relevant for BBN,
experimental investigations are challenging [10]. For the
analogous weak interactions of multinucleon systems, con-
siderably less is known from experiment but these processes
are equally important. The weak two-nucleon interactions
currently contribute the largest uncertainty in calculations
of the rate for proton-proton fusion in the Sun [11–17], and
in neutrino-disintegration of the deuteron [18], which is a

critical process needed to disentangle solar neutrino
oscillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determinations
from the underlying theory of strong interaction, quantum
chromodynamics (QCD), are fundamental to future theo-
retical progress. Such determinations are also of significant
phenomenological importance for calibrating long-baseline
neutrino experiments and for investigations of double
beta decay in nuclei. In this Letter, we take the initial steps
towards meeting this challenge and present the first lattice
QCD (LQCD) calculations of the np → dγ process. The
results are in good agreement with experiment and show
that QCD calculations of the less well-determined electro-
weak processes involving light nuclei are within reach.
Similarly, the present calculations open the way for QCD
studies of light nuclear matrix elements of scalar [19]
(and other) currents relevant for dark matter direct detection
experiments and other searches for physics beyond the
Standard Model.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
!

κ1γ20
γ20 þ jpj2

"
γ0 −

1

a1
þ 1

2
r1jpj2

#
þ γ20

2
l1

$
; ð2Þ

where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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l1 = −3.934 fm −− > σ np = 322.9mb
l1 = −5.48 fm −− > σ np = 342.6mb

Rho	paramet.	

Z-paramet.	

This	could	be	regarded	as	a	measure	of	the	NPLQCD	
uncertainty	in	predic,ng	n+p	fusion,	due	to	the	EFT	
Expansion.	

The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
!

κ1γ20
γ20 þ jpj2

"
γ0 −

1

a1
þ 1

2
r1jpj2

#
þ γ20

2
l1

$
; ð2Þ

where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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Advantages	of	 π/	EFT	for	proton-proton	fusion:	
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1. Small	number	of	parameters.	
2. Two	NLO	π/		EFT	arrangements.	
3. A	“cheat-sheet”	in	the	electromagne,c	sector.	
4. Cutoff	independence	up	to	infinity.	



!
Triton	decay	–	GT	cutoff	independence	
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“Empirical”	extrac,on	of	GT	(using	calculated	F	strength)	
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Triton	decay	–	GT	cutoff	independence	
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Adding	the	LO	1-body	contribu,on	
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Adding	the	NLO	1-body	contribu,ons	
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Triton	decay	–	GT	cutoff	independence	
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Adding	all	contribu,on,	but	L1A	

ft = K

GF
2Vud
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+ 3He

2

+
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⎤

⎦
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1st	es,mate	of	theore,cal	uncertainty:	
All	NLO	contribu,ons	are	of	the	same	order	(1-2%),		
one	can	es,mate	higher	order	effects	as	the	NLO	contribu,on.	
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Adding	all	contribu,on,	but	L1A	

ft = K

GF
2Vud
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+ 3He

2

+
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1st	es,mate	of	theore,cal	uncertainty:	
All	NLO	contribu,ons	are	of	the	same	order	(1-2%),		
one	can	es,mate	higher	order	effects	as	the	NLO	contribu,on.	

Translates	to	±2%	difference	in	pp	fusion	
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ft = K
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2nd	es,mate	of	theore,cal	uncertainty:	
difference	between	Zed	and	Rho	Parameriza,ons.	

Spp (Z − par.) =3.93

Spp (ρ − par.) = 4.09
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ft = K

GF
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2nd	es,mate	of	theore,cal	uncertainty:	
difference	between	Zed	and	Rho	Parameriza,ons.	

Translates	to	±2%	difference	in	pp	fusion	

Spp (Z − par.) =3.93

Spp (ρ − par.) = 4.09



!
So…	is	3%	too	big	to	be	called	precision	physics?	
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gA	systema,c		
uncertainty	 theore,cal	

uncertainty	

gA		
stat.	
unc.	

3H	
halflife	
syst.	
unc.	

i.e.,	theore,cal	uncertainty	of	the	same	order	of	systema,c	experimental	
error	encapsulated	in	gA	and	3H	half	life	(2%	total).	

Spp (gA =1.2701) = 4.01 ± 0.08± 0.07 ± 0.04

Spp (gA =1.275) = 4.12 ± 0.08± 0.07 ± 0.04



!
Summary	

•  Pionless	EFT	reproduces	low-energy	electroweak	observables	to	a	very	
good	precision	(~1%),	even	at	NLO,	and	allows	reliable	uncertainty	
es,mates.	

•  Theore,cal	uncertainty	es,mated	from:	
•  (Natural)	Size	of	NLO	contribu,on	(all	NLO	contribu,ons	are	of	the	same	
order	of	magnitude).	

•  Difference	between	Zed	and	Rho	parameteriza,ons.		
•  Both	error	es,mates	lead	to	about	2%	uncertainty.	

•  EM	sector	confirms	calcula,on	procedure.	
•  Lauce	QCD	for	nuclei	is	a	new	front	for	 π/		EFT	
•  Based	on	the	EM	sector,	a	theore,cal	predic,on	for	pp	fusion:	

	
•  Beker	determina,on	of	gA	is	necessary!		
•  (3H	half	life	is	also	an	open	exp.	issue).	

M
ay
	3
1,
	2
01
6	

Ga
zit
@
RR

TF
	

35	

Spp (gA =1.2701) = 4.01 ±theory 0.08±
gA 1σ( ) 0.07 ± 3 H half life

0.04

Spp (gA =1.275) = 4.12 ±theory 0.08±
gA 1σ( ) 0.07 ± 3 H half life

0.04


