
Online Processing p.1
Introduction

Radoslaw Karabowicz
Denis Klein

FairRoot Group, GSI

Nuclear experiments

Radoslaw Karabowicz, GSI

hazardous difficult

expensive

Computing challenges

hundreds GB/s

couple of GB/s

new HEP experiments producs huge amounts of data

traditional trigger systems are
extended by heterogenous
(CPU, GPU, FPGA, …) online
computing farms to reduce the
data flow

the stored data are repeatedly
being analyzed in the offline
computing facilities (farms,
grid, cloud)

Radoslaw Karabowicz, GSI

Software levels
• Data transport

• Farm configuration

• Farm control & management

• Data reconstruction

• Physics analysis

• Parameter accessibility

• Parameter updates

Framework requierements
• Extend traditional single-process FairRoot to allow

simulation and reconstruction of streaming data.

• High performance, flexibility and scalability are
required!

• Separate running of tasks in multiple processes (that
can be multi-threaded or use GPU) to increase stability
(process crashes do not immediately affect other components and allow easier
recovery).

• Communicate via platform-independent messages
(simplify integration of different hardware and programming languages).

Radoslaw Karabowicz, GSI

FairMQ
• Project started in 2012.

• People involved: Mohammad Al-Turany, Dennis Klein,
Alexey Rybalchenko, Nicolas Winckler, Dennis Klein.

• Message Queue (MQ) - transport messages between
processes using queues.

• FairMQ - data transport framework to organize processing
tasks in topologies, consisting of independent processes
(devices), communicating via asynchronous message
queues over network or inter-process channels.

Radoslaw Karabowicz, GSI

FairMQ Transport Interface
FairMQ transport interface
keeps the device and task code
independent of the transport
implementation (implementing
Send/Receive/Polling methods,
(Multipart) messages, patterns).

Currently two implementations:
• ZeroMQ (TCP, IPC, INPROC,

PGM, TIPC, VMCI);
• nanomsg (TCP, IPC, INPROC,

WebSockets).

Open for implementation with
future technologies. Has to fit in
the message passing model (or
interface it).

Radoslaw Karabowicz, GSI

http://zeromq.org/

FairMQ
Transport based on:

ZeroMQ

http://nanomsg.org/ nanomsg

// production quality, large community, active development,
extensive documentation, examples and patterns

// still beta, several architectural improvements, cleaner internal
API (eg. for adding new transport technologies)

2x Intel Xeon E5-2650 @ 2.60GHz (8 cores, 16 threads) (dual socket), 40 Gbps
Ethernet,
3.10.x kernel

2 x Intel Xeon E5520 @ 2.27GHz (4 cores each, 8 threads) (dual socket), QDR
InfiniBand (IPoIB),
3 Processes on 3.17.x kernel.

Sustained high performance on
Ethernet, InfiniBand (IPoIB)

Low overhead abstractions, staying close to theoretical performance limit of the protocol/network technology

Radoslaw Karabowicz, GSI

http://zeromq.org
http://zeromq.org

FairMQ general
• Promotes separation of concerns to increase maintainability

and reduce coupling: simple single-responsibility devices.

• Keeps the user and transport code separate, allowing them
to evolve independently: abstract transport interface, user
task separation.

• Simplifies and unifies handling of transport details: socket
settings, polling, termination, access to communication
patterns.

• Takes care of the device state (change, query), termination,
command interface, device configuration, logging.

Radoslaw Karabowicz, GSI

Message Queue
• Message - data to be transported

between two processes, essentially it is
an array of bytes (defined by the
address to the first byte and the size of
the array) and a header:
• FairMQMessage - simple message;
• FarMQParts - message composed of

multiple parts.

• Queue - array of messages waiting to be
processed, arranged in a FIFO pipeline.

message
d a t a a r r a y

message queue

message#2

message#1

message
d a t a a r r a y

enqueue

dequeue

Radoslaw Karabowicz, GSI

FairMQ task
• Task contains an algorithm to address (hopefully)

one specific physics problem (f.e. cluster finding,
track fitting, PID assignment, etc.)

• It relates directly to FairTask.

• But, contrary to running under FairRoot, in FairMQ
the task has no direct access to FairRunAna,
FairRootManager, FairRuntimeDb

ClusterFinder TrackFitter PIDTrackFinder TrackMerger

Radoslaw Karabowicz, GSI

FairMQ devices
• Simple single-responsibility computer programm able

to receive and send messages over various channels.

• Messages may contain data, runtime parameters,
configuration or communication data.

• It may encapsulate a task.

• There are also devices not connected to tasks, for
example to provide IO access, to read and send
parameters, to split or merge data streams.

Sampler TaskProcessor FileSink Proxy×n ×m

Radoslaw Karabowicz, GSI

MQ Devices

Sampler

read data
send data

Processor

receive data
process data

send data

Sink

receive data
store data

Merger

n x receive data
send data

Splitter

receive data
n x send data

Proxy

n x receive data
m x send data

ParameterServer

receive requests
send parameters

touching the data

not touching the data

General types

Radoslaw Karabowicz, GSI

FairMQ channel
• Channel connects devices.

• There is always one device that binds a specific
port on the host machine.

• Another devices connect to that port at a given
address.

• The messaging pattern defines the way of
message exchange.

Sampler FileSink

*:port address:port
Radoslaw Karabowicz, GSI

FairMQ req-rep
• the commom example of request-reply pattern is the

comunication between a server and clients;

• the clients request a specific data or action;

• the server replies by sending the data or an answer;

• in this pattern the server has to bind, the clients
connect.

ParMQ-Server

Processor
Processor

Processorrequest

reply
request

replyreply

request

Radoslaw Karabowicz, GSI

FairMQ push-pull
• the push-pull pattern works like a pipeline: the messages flow always in

one direction;

• one side pushes the messages into the queue;

• another side pulls the messages from the queue;

• this pattern works either 1to1, 1toN or Nto1;

• in case of 1toN, the messages will be distributed among the N receivers
evenly;

• in the case of Nto1, the receiver will receive the messages from senders
without prioritazing.

Sampler

Processor

Processor
FileSink

pull

push

pull

pushpull

push

pull

push

Radoslaw Karabowicz, GSI

FairMQ pub-sub
• the publish-subscribe pattern could be used for controling

purposes;

• the subscriber(s) gets the messages after they are published by
the publisher(s);

• it works 1to1, 1toN or Nto1;

• if no subscribers connected, the messages will be lost;

• otherwise each subscriber gets each message.

ControlSystem

Sampler
Processor

Sink
publish

sub

sub

sub

Radoslaw Karabowicz, GSI

FairMQ PAIR

• bidirectional communication between two nodes.

Device Devicereceive - send send - receive

Radoslaw Karabowicz, GSI

FairMQ State Machine
A complex topology may
require some degree of
synchronization between
different stages of the
processing pipeline.

To allow this, the state of the
devices can be queried and
changed in response to an
external control system.
This is handled by the
FairMQStateMachine.

The device remains
responsive regardless of the
condition of the user code, by
running it in a separate thread.

Additionally, an orthogonal OK/ERROR
state reflects the device condition. If
error occurs, the device remains in the
ERROR state to allow debuggin.

Radoslaw Karabowicz, GSI

FairMQ topology
• the different devices are used as “LEGO” blocks;

• the structure of all the blocks used for a given
problem is called a topology;

• it lists the devices used, states the connections
between them and describes the communication
patterns;

Radoslaw Karabowicz, GSI

FairMQ topology
• defined in a JSON file;

• contains the list of devices (by the unique IDs);

• specifies connection types and communication patterns, addresses and
ports, buffer sizes, verbosity level;

• example view of a topology with 1 sampler (bind), 1 sink (bind), 3 processors
(connect) with push-pull communication pattern + a patameter server
accessed via request-reply:

Radoslaw Karabowicz, GSI

pull processor1

processor2

processor3

sink
sampler

push pull

pull

pullpush

push

push

localhost
:5565 localhost

:5566

parmq-server
rep

req

req

req
localhost

:5005

