
Juli 6, 2017 

M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t 

Good Programming Practice 

| Tobias Stockmanns 



Juli 6, 2017 Folie 2 Tobias Stockmanns  

Why is this necessary? 

When ever 
•  many people work 
•  over a long time 
•  on a complex software project 
•  with a high demand on reproducibility 
it is mandatory to have at least a basic knowledge to write proper 
code, because 
 
•  You want to read and understand what others did (or what you did 

after a year not looking into the code) 
•  You want to find bugs easily and fix them just on one place 
•  You want to add additional features without rewriting the hole 

code again 
•  You want to profit from the work of others 
•  You want that the full project works 



Juli 6, 2017 Folie 3 Tobias Stockmanns  

LEVEL 1 



Juli 6, 2017 Folie 4 Tobias Stockmanns  

Do not copy and paste code 

•  Most important rule! 
•  But one of the most broken one 

•  If you copy code from someone else (or even more often 
from yourself) you increase the places where you have to 
fix something if there was a bug in the first place 

•  If you want to add additional features you have to do it 
many times 

•  Better use common methods/functions and common base 
classes to reuse existing code without copying. 



Juli 6, 2017 Folie 5 Tobias Stockmanns  

KISS – keep it simple, stupid 

•  “Keep things as simple as possible bot not simpler” - A. 
Einstein 

•  Most important for code is that it is understandable 
•  So prefer simple, short and easily understandable solutions 

•  “Any fool can write code that computers can understand, 
good programmers write code that humans can 
understand.” 



Juli 6, 2017 Folie 6 Tobias Stockmanns  

Coding Conventions 

•  Every project with more than one developer should have a 
set of coding conventions to improve the readability of the 
code 

•  For PANDA they were defined 2007 and can be found at: 
http://panda-wiki.gsi.de/cgi-bin/view/Computing/
PandaRootCodingRules 



Juli 6, 2017 Folie 7 Tobias Stockmanns  

Coding Conventions 

•  PandaRoot follows the ROOT coding conventions 

•  All PandaRoot classes should start with the suffix Pnd ! 

•  Include files in the C++ code will have the extension ".h". 

•  The implementation files in C++ will have the extension 
".cxx“. 

•  Every include file should contain a mechanism to prevent 
multiple inclusions. For the file XxxMyFile.h, the Panda 
convention is:  
#ifndef XXXMYFILE_HH 
#define XXXMYFILE_HH 
[....] 
#endif 



Juli 6, 2017 Folie 8 Tobias Stockmanns  

Coding Conventions 

•  Use a separate .cxx file, and corresponding .h file, for each 
C++ class. The filename should be identical to the class 
name. 

•  Do not create class names (and therefore filenames) that 
differ only by case. 

•  The identifier of every globally visible class, function or 
variable should begin with the package "TLA" (Three Letter 
Acronym) prefix from the package to which it belongs (e.g. 
mvd, emc, tpc, etc.) This implies that the implementation 
(.cxx) and interface (.h) files for C++ classes should also 
begin with the same prefix. 
 



Juli 6, 2017 Folie 9 Tobias Stockmanns  

Coding Conventions 

•  Avoid overloading functions and operators unless there is a 
clear improvement in the clarity of the resulting code. For 
read and write access to data members, use: 
 
int  GetMyData( ) const; 
void SetMyData( const int value ); 
 
rather than 
 
int MyData( ) const; 
void MyData( const int value ); 
 
In fact, using SetMyData is a strict rule. Please use it. 
GetMyData is not a strict rule, but strongly encouraged. 

  



Juli 6, 2017 Folie 10 Tobias Stockmanns  

Coding Conventions 

•  Members of a class should start with an f at the beginning: 

•  Examples: fX, fData, … 

•  Use the root types insteadt of C++ types: 
•  Int_t, Double_t, Bool_t 

•  Compare the same data types with each other: 
•  Unsigned with unsigned 
•  Int_t with Int_t and not with Double_t 



Juli 6, 2017 Folie 11 Tobias Stockmanns  

Coding Conventions 

•  Don't implicitly compare pointers to nonzero (i.e. do not 
treat them as having a boolean value). Use 
 

if ( 0 != ptr ) ... 
 

instead of 
 
if ( ptr ) ... 
 
If you are doing an assignment in a comparison expression, 
make the comparison explicit: 
while ( 0 != (ptr=iterator() ) ) ... 
instead of 
while ( ptr=iterator() ) ... 



Juli 6, 2017 Folie 12 Tobias Stockmanns  

Coding Conventions 

•  format of Comments 
When using C++, the preferred form for short comments is: 

// This is a one-line comment. 
i.e. use the "//" comment format. If the comment extends 
over multiple lines, each line must have // at the beginning: 
 
// This is a long and boring comment. 
// I need to put // at the start of each line. 
// Note that the comment starts at the // and 
// extends to the end of line. These comments 
// can therefore appear on the same line as code, 
// following on from the code. 
 

Do not use "/* */" comments because they are very error prone 



Juli 6, 2017 Folie 13 Tobias Stockmanns  

Documentation – self-documenting 

•  The best code is a self-documenting code 
•  Keep it short 

•  No method longer than a page 
•  No class more complex than necessary 

§  Keep it structured 
•  Not more than one statement ended by a “ ; ” in each 

line 
•  Indent your blocks 
int Foo(bool isBar) 
{ 
  if (isFoo) { 
    bar(); 
    return 1;  
  } else { 
    return 0; 
  } 
} 



Juli 6, 2017 Folie 14 Tobias Stockmanns  

Documentation – self-documenting 

•  Use speaking variable/method/function/class names 
•  Use English! 
•  As longer the scope of a variable is as more detailed 

should be its name 
•  If the scope is short the name should be short 
•  Do not use abbreviations 
•  Use CamelCasing 
•  Methods with boolean return type should start with an 
Is…, e.g. IsFound(), IsEmpty(), … 
or in appropriate cases with Has…, Can… 

•  Search methods should start with a Find…, e.g. 
FindTimeStamp() 

•  Use enums for type-identification 



Juli 6, 2017 Folie 15 Tobias Stockmanns  

Documentation 

•  Documentation should be in the .h as well as in the .cxx file 
•  In the .h file the interface is described: 

•  What is the method doing? 
•  What is the meaning of the parameters (units!)? 
•  What is the meaning of the return value? 

•  In the .cxx file it should be explained how something is done 

•  Use doxygen for documentation! 
http://www.stack.nl/~dimitri/doxygen/ 



Juli 6, 2017 Folie 16 Tobias Stockmanns  

Use the SVN/GIT 

•  SVN/GIT allows you to do changes on your code without 
harming the code of others and your own code 

•  Therefore the development branch / your fork exists 
•  A stable version of pandaRoot is moved into your own 

development branch / fork 
•  Here you can do your code changes without interfering with 

the work of others 
•  Once your work is finished and tested you can merge it 

back into the trunk / make a pull request 
•  Documentation can be found at the PandaComputing wiki 

pages: 
http://panda-wiki.gsi.de/cgi-bin/view/Computing/
PandaRootSvnDev2Trunk 



Juli 6, 2017 Folie 17 Tobias Stockmanns  

Use an appropriate development suite 

•  Modern development suits help you in your day-by-day 
coding work a lot 

•  They offer code completion, automatic formatting, checking 
for syntax failures and many more 

•  There are many free on the market: 
•  KDevelop 
•  QDevelop 
•  eclipse 
•  … 

•  It does not matter which you use but use one 
•  I am using eclipse including SVN and doxygen. 

How to use svn and cmake within eclipse can be found here 



Juli 6, 2017 Folie 18 Tobias Stockmanns  

LEVEL 2 
How to write decent classes 



Juli 6, 2017 Folie 19 Tobias Stockmanns  

SOLID - Principle 

•  Single Responsibility Principle 
 

•  Open Closed Principle 
 

•  Liskov Substitution Principle 
 

•  Interface Segregation Principle 
 

•  Dependency Inversion Principle 

For more information see http://www.clean-code-developer.de/ 
 http://www.codeproject.com/Articles/93369/

How-I-explained-OOD-to-my-wife 



Juli 6, 2017 Folie 20 Tobias Stockmanns  



Juli 6, 2017 Folie 21 Tobias Stockmanns  

Single Responsibility Principle 

•  A class should only have one single responsibility 

•  The responsibility should be entirely encapsulated by the 
class 

•  There should be no more than one reason to change a 
class 

•  Reduces the number of dependencies 
•  Keeps classes slim 
•  Better to understand 



Juli 6, 2017 Folie 22 Tobias Stockmanns  



Juli 6, 2017 Folie 23 Tobias Stockmanns  

Open Closed Principle 

•  A class should be open for extension, but closed for 
modification 

•  Make it easy to add new functionality and different 
algorithms to your classes 

•  Protect the existing ones against any external 
modifications 



Juli 6, 2017 Folie 24 Tobias Stockmanns  

Example for bad code 



Juli 6, 2017 Folie 25 Tobias Stockmanns  

How to do it better 



Juli 6, 2017 Folie 26 Tobias Stockmanns  

Open / close principle continued 

 
•  Make all data variables private 

•  Access them via Set/Get methods 
•  Only implement Set if it is really necessary 

•  Do not use global variables 

•  Hide as much as you can from the user 
 



Juli 6, 2017 Folie 27 Tobias Stockmanns  



Juli 6, 2017 Folie 28 Tobias Stockmanns  

Liskov Substitution Principle 

•  Objects in a program should be replaceable with instances 
of their subtypes without altering the correctness of that 
program 

•  Protect your code from unwanted behavior 

•  Rule to decide if a class can be a subclass of another 
one 



Juli 6, 2017 Folie 29 Tobias Stockmanns  

LSP - Example 

What is the problem? 



Juli 6, 2017 Folie 30 Tobias Stockmanns  



Juli 6, 2017 Folie 31 Tobias Stockmanns  

Interface Segregation Principle 

•  Many client specific interfaces are better than one general 
purpose interface 

•  Clients should not be forced to depend upon interfaces that 
they do not use 



Juli 6, 2017 Folie 32 Tobias Stockmanns  



Juli 6, 2017 Folie 33 Tobias Stockmanns  

Dependency Inversion Principle 

•  A. High-level modules should not depend on low level 
modules. Both should depend on abstractions. 

•  B. Abstractions should not depend upon details. Details 
should depend upon abstractions 



Juli 6, 2017 Folie 34 Tobias Stockmanns  

Example for bad code 



Juli 6, 2017 Folie 35 Tobias Stockmanns  

How to do it better 



Juli 6, 2017 Folie 36 Tobias Stockmanns  

Another example – BAD CODE 



Juli 6, 2017 Folie 37 Tobias Stockmanns  

Another example – GOOD CODE 



Juli 6, 2017 Folie 38 Tobias Stockmanns  

General statements 

•  Use std::cout instead of printf 

•  Do not use C arrays like: double myVal[10] 
The standard library offers a long list of container classes 
(vector, map, set, list, …) which are more powerful and 
more safe 

•  As an alternative there are root classes like TClonesArray 

•  Do not fear to refactorize (clean up) your code. SVN 
prevents you from braking something. 

•  If you use pointers in your classes make sure you clean 
them up at the end 

•  If you use pointers in your classes write an appropriate copy 
constructor and assignment operator 


