

Some Remarks on $\Xi^* \& \Omega^*$

Jun 09, 2016 | Albrecht Gillitzer, IKP Forschungszentrum Jülich LVII PANDA Meeting, GSI Darmstadt, June 2016

Outline

- Summary of Baryons 2016
- Ideas for the Strange Baryon Spectroscopy Program
- MC event generation issues

Baryons 2016

Invitation to give an overview talk on strange baryon spectroscopy Not a PANDA talk

Scientific program: 8 plenary sessions 21 parallel sessions topics: light, heavy and exotic baryons

parallel session on "physics of hyperons" **International Conference on the Structure of Baryons**

BARYONS 2016

May 16-20, 2016 Florida State University Tallahassee, USA

baryon2016@hadron.physics.fsu.edu http://baryons2016.physics.fsu.edu

Strange Partners

- Approximate SU(3) flavor symmetry
- N* & Δ states have partners in the strange sector
- focus on Ξ and Ω
 - Ξ: as many states as N* & Δ together
 - Ω: as many states as Δ
- scrutinize our understanding of the baryon excitation pattern

Status of **Ξ**^{*} Resonances: RPP 2014 Chin. Phys. C 38 (2014) 090001

Table 1. The status of the Ξ resonances. Only those with an overall status of *** or **** are included in the Baryon Summary Table.

			Status as seen in —				
Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels
$\Xi(1318)$	1/2+	****					Decays weakly
$\Xi(1530)$	3/2 +	****	****				
$\Xi(1620)$		*	*				
$\Xi(1690)$		***		***	**		
$\Xi(1820)$	3/2-2	***	**	***	**	**	
$\Xi(1950)$	-	***	**	**		*	
$\Xi(2030)$		***		**	***		
$\Xi(2120)$		*		*			
$\Xi(2250)$		**					3-body decays
$\Xi(2370)$		**					3-body decays
$\Xi(2500)$		*		*	*		3-body decays

**** Existence is certain, and properties are at least fairly well explored.

- *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.
- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

Ξ(1820):

Teodoro78 favors J = 3/2, but cannot make a parity discrimination. Biagi 87c is consistent with J = 3/2 and favors negative parity for this *J* value.

SU(6) x O(3) Classification

RPP 2014: Chin. Phys. C 38 (2014) 090001

"Assignments for ... $\Xi(1820)$ and $\Xi(2030)$, are merely educated guesses."

Ξ(1690), Ξ(1950): ? T. Melde *et al.*, PRD 77 (2008) 114002

decuplet: no Ξ^* , no Ω^*

"... nothing of significance on Ξ resonances has been added since our 1988 edition."

$\overline{J^P}$	$(D, L_N^P) S$ Octet	members		Singlets
$1/2^{+}$	$(56,0^+_0) \ 1/2 N(939) \ \Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0^+_2) \ 1/2 N(1440) \Lambda(1600)$	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$	
$1/2^{-}$	$(70,1^{-}_{1}) \ 1/2 N(1535) \Lambda(1670)$	$\Sigma(1620)$	$\Xi(?)$	$\Lambda(1405)$
		$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1}) \ 1/2 N(1520) \Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1^{-}_{1}) \ 3/2 N(1650) \Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
		$\Sigma(1620)^{\dagger}$		
$3/2^{-}$	$(70,1_1^-) \ 3/2 N(1700) \Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5/2^{-}$	$(70,1^{-}_{1}) \ 3/2 N(1675) \Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1/2^{+}$	$(70,0^+_2) \ 1/2 N(1710) \Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2) \ 1/2 N(1720) \Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$(56,2^+_2) \ 1/2 N(1680) \Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70,3^3) \ 1/2 N(2190) \Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3^3) \ 3/2 N(2250) \Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56,4^+_4) \ 1/2 N(2220) \Lambda(2350)$	$\Sigma(?)$	$\Xi(?)$	

Decuplet members

$3/2^{+}$	$(56,0^+_0)$	$3/2 \Delta(1232) \Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
$3/2^{+}$	$(56,0^+_2)$	$3/2 \Delta(1600) \Sigma(1690)$	$\Xi(?)$	$\Omega(?)$
$1/2^{-}$	$(70,1^{-}_{1})$	$1/2 \Delta(1620) \Sigma(1750)$	$\Xi(?)$	$\Omega(?)$
$3/2^{-}$	$(70,1^{-}_{1})$	$1/2\Delta(1700)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$5/2^{+}$	$(56,2^+_2)$	$3/2\Delta(1905)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$7/2^{+}$	$(56,2^+_2)$	$3/2\Delta(1950)\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$
$11/2^+$	$(56,4^+_4)$	$3/2\Delta(2420)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$

Quark Model

Ξ:

- many states predicted below 3 GeV
- compare 1/2⁺ and 1/2⁻ excitation

Ω:

- several states predicted between 2 GeV and 3 GeV
- compare 3/2⁺ and 3/2⁻ excitation

U. Löring et al., EPJA 10 (2001) 447

s.a.: M. Pervin, W. Roberts, PRC 77 (2008) 025202

Experimental Prospects

Invitation to give a talk on "Strange Baryons ...with reference to the programs at PANDA, GlueX, and LHCb"

•	$pp \rightarrow \Xi^* X$ (prompt or delayed)	LHCb	> F	P. Spradlin, Wednesday
•	$\gamma p \rightarrow K^+ K^+ \Xi^*$	GlueX, CLAS	512	L. Guo, Tuesday
•	$\overline{p}p \rightarrow \Xi^* \overline{\Xi}$ & c.c.	PANDA		
	$e^+e^- \rightarrow \Xi^* X$ (prompt or delayed)	Belle II		J. Yelton, Thursday
		BES III		I. Destefanis, Thursday
•	$K^{-}p \rightarrow K^{+}\Xi^{*-}$	J-PARC		M. Naruki, Tuesday
•	$K_L p \rightarrow K^+ \Xi^{*0}$	Hall D K_L bea	m	S. Taylor, Tuesday

Ξ Production in γp: CLAS

Runs g6a, g6b:

- first exclusive photoproduction of Ξ^{-}
- reaction $\gamma p \rightarrow K^+ K^+ X$

J. Price et al., PRC 71 (2005) 058201

E Production at GlueX

A. AlekSejevs *et al.*, arXiv:1305.1523 GlueX proposal to PAC 40

- GlueX Proposal (JLAB PAC 39, 40 & 42): "Decays to Strange Final States"
- Study excited Ξ states
- parity measurement of the g.s. Ξ^{-}
- will probably need enhanced kaon identification in forward region
- Components of BaBar DIRC for GlueX

Introduction Properties of Ξ Resonances Cascades at GlueX Summary and Outlook

Opportunities with Secondary K_L^0 Beams

Ξ Spectroscopy with the GlueX Detector

Expected yields of Ξ states using (PAC 40 proposal):

 $N = \epsilon \sigma n_{\gamma} n_t T$ where

 $\sigma_{\Xi(1320)} = 15 \text{ nb and } \sigma_{\Xi(1530)} = 2 \text{ nb at } E_{\gamma} = 5 \text{ GeV}$ $\epsilon_{\Xi(1820)} \approx 30 \%$ (BDT: signal purity 0.9)

- → 800,000 Ξ⁻(1320) events
 100,000 Ξ⁻(1530) events
 90,000 K⁺K⁺K⁻Λ events (based on PYTHIA)
- → At least x10 more statistics than previous CLAS result.

Talk at EMMI Workshop "Resonances in QCD", GSI Darmstadt, October 12-14, 2015

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

~ n a @

Strange Baryons at LHCb

Run	Year	√s [TeV]	∫Ldt
I	2011	7	1 fb ⁻¹
I	2012	8	2 fb ⁻¹
Ш	2015	13	320 pb ⁻¹

ΤТ

111 March

VELO

 \succ

Strange Baryons at LHCb

- 2015 Run II data: $\sqrt{s} = 13$ TeV
- first analysis to study prompt Ξ and Ω production^{*}

communicated by M. Pappagallo Albrecht Gillitzer

Early Physics: Expected Rates for Strange Baryons

- initial phase: $L \cong 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ instead of $L \cong 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- nevertheless the $\Xi \overline{\Xi}$ production rate will be $R_{\Xi \overline{\Xi}} \cong 10/s \cong 10^6/d$
- for $\Omega\overline{\Omega}$ production we expect $R_{\Omega\overline{\Omega}} \cong 0.3/s \cong 3 \cdot 10^4/d$
- for excited states the cross section should be of the same order of magnitude as for the ground state for given $\sqrt{s} \sqrt{s_{thr}}$
- the *detected* rate depends on the specific decay mode (branching & reconstruction efficiency)
- e.g. $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^{*-} \rightarrow \bar{\Xi}^+ \Xi^- \pi^0 \rightarrow \bar{\Lambda}\pi^+ \Lambda \pi^- \pi^0 \rightarrow \bar{p}\pi^+ \pi^+ p \pi^- \pi^- \pi^0$ assume $b = 0.5 \cdot 0.64^2 = 0.2$ and $\epsilon = 5\% \rightarrow R_{det} \cong 10^4/d$

Ξ^* / Ω^* Studies within the PANDA Physics Program

- good case for initial phase with lower L
- Λ & Σ spectroscopy can be done in parallel
- Iong runs to measure the X(3872) width in energy scan planned:
- parallel trigger for Ξ* and Ω*
- p ≈ 7.0 GeV/c
- $M_{max}(\Xi^*) \approx 2.55 \text{ GeV}$ $(M_{max}(\Omega^*) \approx 2.20 \text{ GeV})$
- later: long runs for threshold scan of $D_s^{\pm}D_s(2317)^{\mp}$
- p ≈ 8.8 GeV/c
- $M_{max}(\Omega^*) \approx 2.61 \text{ GeV}$

- EvtGen
- $\bar{p}p \to \bar{\Xi}^+ \Xi^{*-} \to \bar{\Xi}^+ \Lambda K^-$
- included all Ξ^* states in PDG above $\Lambda \overline{K}$ threshold
- typical width ~20 MeV
- decay: PHSP
- added $\overline{\Xi}^+ \Lambda K^-$ cont.
- added K(3100) seen in $\bar{p}\Lambda$, $\bar{p}\Lambda$ n π & c.c.

• projections on ΛK^- and $\overline{\Xi}^+\Lambda$ mass

same as before but ±
 states taken from
 M. Pervin, W. Roberts, PRC 77
 (2008) 025202:

J^P	Ξ		Ω	
	Experiment	Model	Experiment	Model
$1/2^+$	1.317 ± 0.001	1.325	_	2.175
	_	1.891	_	2.191
	_	2.014	_	_
$3/2^{+}$	1.532 ± 0.001	1.520	1.672	1.656
	_	1.934	_	2.170
	_	2.020	_	2.182
$5/2^{+}$	1.950 ± 0.015	1.936	_	2.178
-	_	2.025	_	2.210
$7/2^{+}$	2.025 ± 0.005	2.035	_	2.183
-		2.148	_	_
$1/2^{-}$	1.690 ± 0.010	1.725	_	1.923
-	_	1.811	_	_
$3/2^{-}$	_	1.759	_	1.953
-	1.823 ± 0.005	1.826	_	_
5/2-	_	1.883	_	_

\bigcirc	рa	Э
>		

	J^P	Ξ		Ω	
		Experiment	Model	Experiment	Model
	$1/2^+$	1.317 ± 0.001	1.325	_	2.175
13 states above	,	_	1.891	_	2.191
AK threshold		_	2.014	_	_
	$3/2^{+}$	1.532 ± 0.001	1.520	1.672	1.656
	·	_	1.934	_	2.170
		_	2.020	_	2.182
	$5/2^{+}$	1.950 ± 0.015	1.936	_	2.178
		_	2.025	_	2.210
	$7/2^{+}$	2.025 ± 0.005	2.035	_	2.183
			2.148	_	_
	$1/2^{-}$	1.690 ± 0.010	1.725	_	1.923
		_	1.811	_	_
	$3/2^{-}$	_	1.759	_	1.953
		1.823 ± 0.005	1.826	_	_
M. Pervin, W. Roberts, PRC 77 (2008) 025202	5/2-	_	1.883	—	—

Ω^* Production at p = 7.0 GeV/c

- $\bar{p}p \to \bar{\Omega}^+ \Omega^{*-} \to \bar{\Omega}^+ \Xi^- K_S$
- Ω* states taken from
 M. Pervin, W. Roberts, PRC 77
 (2008) 025202:

 I^P Ξ Ω Model Experiment Experiment Model $1/2^{+}$ 1.317 ± 0.001 1.325 2.175 1.891 2.191 2.014 _ $3/2^{+}$ 1.532 ± 0.001 1.520 1.672 1.656 1.934 2.170 2.020 2.182 $5/2^{+}$ 1.950 ± 0.015 1.936 2.178 2.025 2.210 $7/2^{+}$ 2.025 ± 0.005 2.035 2.183 2.148 _ 1.690 ± 0.010 $1/2^{-}$ 1.725 1.923 1.811 $3/2^{-}$ 1.759 1.953 1.823 ± 0.005 1.826 $5/2^{-}$ 1.883

Ω^* Production at p = 7.0 GeV/c

- Ω* states taken from
 M. Pervin, W. Roberts, PRC 77 (2008) 025202
- 20 MeV width assumed
- projection on $\Xi^- K_S$ mass
- large overlap: 9 states result in only 3 bumps

Issues in MC Event Generation

- Problem in EvtGen: in reaction $\bar{p}p \rightarrow \bar{X}X^*$ a flat mass distribution is generated instead of Breit-Wigner if $\bar{X}X^*$ mass is larger than mass of pbarpSystem in file evt.pdl. (solved)
- Would like to generate realistic angular distributions for Ξ^{*} and Ω^{*} decay particles depending on J^P value
- No appropriate decay model implemented in EvtGen

• Question:

- include this in EvtGen?
- use independent PWA code?