THMP Calibration

Miriam Kümmel

Ruhr-Universität Bochum Institut für Experimentalphysik I

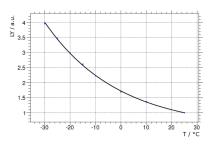
LVII. PANDA-Collaboration Meeting June 2016

Latest Design of the THMP

- Using type A USB connectors, still using the CAN-bus protocol!
- Temperature sensor integrated on mainboard
- Change of plugs and cables, which connect the THMP with the sensors, in order to match patch panel PCB
- → Modified the calibration boards

Why and How Do We Measure Temperatures?

PWO-II: LY depends on T with $\frac{d(LY)}{dT} = 3 \%/^{\circ}C$ at -25 °C



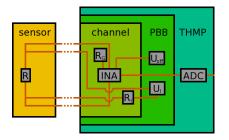
- Goal for $\overline{P}ANDA$: $\Delta T < 0.1$ °C \rightarrow sensors with $\sigma_T < 0.02$ °C
- R vs T relation of platinum quite linear

$$R(T) \approx R(0^{\circ}C)(1 + \alpha_{Pt} \cdot T), \quad \alpha_{Pt} = 3.89 \cdot 10^{-3} K^{-1}$$

• Accuracy for temperature sensors translates to accuracy for the THM \overline{P} : $\sigma_R \approx \frac{\partial R(T)}{\partial T} \cdot \sigma_T \approx 7.8 \, \text{m}\Omega$

How Do We Measure Resistances?

- 4-wire measurement
- constant current $I = \frac{U_I}{R_I}$
- gain $G = 5 + \frac{200 \,\mathrm{k}\Omega}{R_G}$
- ullet offset voltage $U_{
 m off}$
- ADC conversion factor C



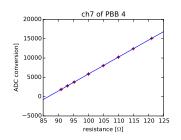
$$(R \cdot I \cdot G + U_{\text{off}}) \cdot C = R \underbrace{I \cdot G \cdot C}_{m} + \underbrace{U_{\text{off}} \cdot C}_{m} = N$$

 $ightarrow \sigma_R$ corresponds to 3.5 ADC channels for optimized values of U_I , R_I , R_G and $U_{\rm off}$

How Do We Measure Resistances Accurately?

! Electronic components vary within their production accuracy all readout channels *k* on a PBB are different!

- constant current $I_{\mathbf{k}} = \frac{U_{l}}{R_{l,\mathbf{k}}}$
- gain $G_k = 5 + \frac{200 \,\mathrm{k}\Omega}{R_{G,k}}$
- ullet offset voltage $U_{
 m off}$
- ADC conversion factor C



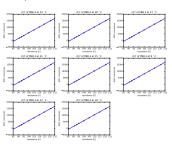
$$R_{k} \cdot \underbrace{I_{k} \cdot G_{k} \cdot C}_{m_{k}} + \underbrace{U_{\text{off}} \cdot C}_{n} = N_{k}$$

→ Calibrate each channel by fitting a 1st order polynomial to pairs of known resistors and ADC conversions!

How Do We Measure Resistances with Respect to the T?

! behaviour of diodes and resistors depends on T for $R_{I,k}$, $R_{G,k}$ is $(\Delta R/R)/\Delta T=10\,\mathrm{ppm/K}$ the best available

- constant current $I_k(T) = \frac{U_l(T)}{R_{l,k}(T)}$
- gain $G_k(T) = 5 + \frac{200 \,\mathrm{k}\Omega}{R_{G,k}(T)}$
- offset voltage $U_{\text{off}}(T)$
- ADC conversion factor C

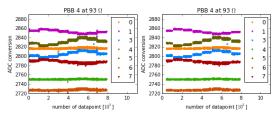


$$R_k \cdot \underbrace{I_k(T) \cdot G_k(T) \cdot C}_{m_k(T)} + \underbrace{U_{\text{off}}(T) \cdot C}_{n(T)} = N_k$$

 \rightarrow Perform fits (prior slide) at different temperatures, describe dependency on T & monitor THM \overline{P} temperature!

How Do We Measure Resistances with Respect to the T?

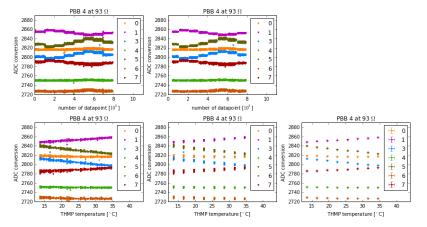
- Measure with varying temperature for each resistance value
- Analyse the data from periods with stable temperature



The temperature dependency is fairly linear

How Do We Measure Resistances with Respect to the T?

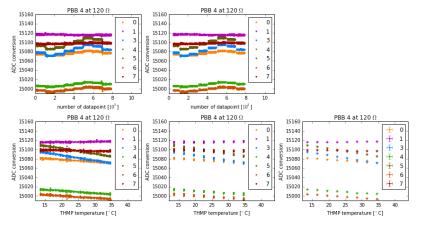
- Measure with varying temperature for each resistance value
- Analyse the data from periods with stable temperature



The temperature dependency is fairly linear

How Do We Measure Resistances with Respect to the T?

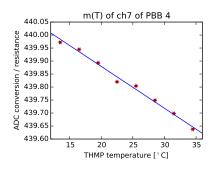
- Measure with varying temperature for each resistance value
- Analyse the data from periods with stable temperature

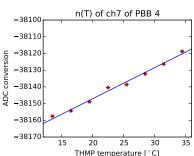


 The temperature dependency is fairly linear but differ for individual channels and different resistances

How Do We Measure Resistances with Respect to the T?

• Consequently $m_k(T)$ and n(T) depend linearly on T

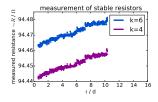




How Do We Measure Resistances Reliably?

! There is an additional PBB-wide drift of unknown origin (t)!

- constant current $I_k(T, t) = \frac{U_l(T, t)}{R_{l,k}(T)}$
- gain $G_k(T) = 5 + \frac{200 \,\mathrm{k}\Omega}{R_{G,k}(T)}$
- offset voltage $U_{\text{off}}(T, t)$
- ADC conversion factor C

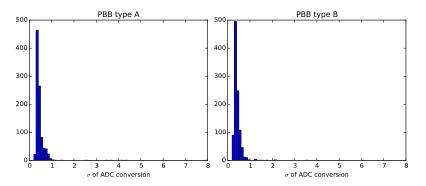


$$R_k \cdot \underbrace{I_k(T, t) \cdot G_k(T) \cdot C}_{m_k(T, t)} + \underbrace{U_{\text{off}}(T, t) \cdot C}_{n(T, t)} = N_k(T, t)$$

 \rightarrow Use a reference resistor on each PBB! The 10 THM \overline{P} s foreseen for the fwd. endcap are still sufficient.

Choosing Best Configuration

• Two similiar options for R_G and diodes which generate the offset voltage $U_{\rm off}$ have been considered and were tested.



- The temperature dependency has to be dealt with anyway.
- The second option seems to be electronically more stable.

Summary and Outlook

- ! The resistance of resistors depends on *T*. The effect has already been minimized, but has still to be compensated.
- ✓ A temperature dependent calibration is done.
- ✓ The THMP temperature is monitored by a temperature sensor which is included in the final THMP design.

 The temperature dependency is quite linear.
 - ! Additionally, a slow drift has been observed.
- → The source of the drift will be determined by a long-term measurement.
- ✓ The drift can be compensated by using a reference resistor.
- ! If you want a well calibrated THMP, you will have to adjust the cabling.
- ✓ The setup for the temperature sensor calibration is updated, mimicking the endcap instead of the prototype design.

Questions? Comments?

How to Take the Reference Resistor Into Consideration?

- Two possible sources have been identified: U_I and U_{off}
- → Determine the impact of each source

$$m_{k}(T,t) = \frac{U_{l}(t)}{R_{l,k}(T)} \cdot G_{k}(T) \cdot C = m_{k}(T)\alpha(t)$$

$$\Rightarrow R_{k} \cdot m_{k}(T) \cdot \alpha(t) + n(t) = N_{k}(T,t)$$

$$\Rightarrow \frac{N_{k}(T,t) - N_{j}(T,t)}{R_{k}m_{k}(T) - R_{j}m_{j}(T)} = \alpha(t)$$

→ Long-term measurement with known resistors of different resistances for each channel

case 1
$$U_I$$
 stable: $n(t) = N_{ref}(T, t) - R_{ref} \cdot m_k(T)$

case 2
$$U_{\text{off}}$$
 stable: $R_k = \frac{N_k(T,t)-n}{N_{\text{ref}}(T,t)-n} \frac{m_{\text{ref}}(T)}{m_k(T)} R_{\text{ref}}$

case 3 Both unstable: Best ansatz with only one reference sensor: $\frac{N_k(T,t)-n(0)}{N_{\text{ref}}(T,t)-n(0)}\frac{m_{\text{ref}}(T)}{m_k(T)}R_{\text{ref}} = R_k\left(1-\frac{n(t)-n(0)}{N_{\text{ref}}(T,t)}\left(1-\frac{R_{\text{ref}}m_{\text{ref}}(T)}{R_{\text{ref}}m_{\text{ref}}(T)}\right)\right)$