

Update on the Activities on PASTA

Alessandra Lai, Forschungszentrum Jülich, 7 June, 2016

Outline

PASTA Readout Chain

PASTA Configuration

Outlook

JDRS: Jülich Digital Readout System

The basic components

Jülich Digital Readout System (JDRS): same as for the ToPix chip.

Data conversion and communication with the PC:

- DUT: ToPix, PASTA
- evaluation board: Xilinx ML605 (Virtex-6 FPGA)
- firmware: VHDL

Configuration and data handling:

- PC
- software: C++
- MVD readout framework (MRF)
- Qt-based GUI

The real set up

Preliminary operations

- Program in the firmware the physical connections between the readout board (PASTA) and the evaluation board (FPGA).
- Check with the oscilloscope if all the signals are routed correctly.

Pin #	Signal	FMC Signal Name	Pin #	Signal	FMC Signal Name
1	$CLK_I +$	LA00_CC_P	2	Sync_Reset+	LA10_P
3	CLK_I -	LA00_CC_N	4	Sync_Reset-	LA10_N
5	-	-	6	$TEST_Pulse+$	LA11_P
7		-	8	TEST_Pulse-	LA11_N
9	SDI +	LA02_P	10	-	-
11	SDI -	LA02_N	12	-	-
13	SCLK +	LA03_P	14	-	-
15	SCLK -	LA03_N	16	-	-
17	CS +	LA04_P	18	-	-
19	CS -	LA04_N	20	-	-
21	-	-	22	-	-
23	-	-	24	-	-
25	TX0 +	LA06_P	26	-	-
27	TX0 -	LA06_N	28	-	-
29	TX1 +	LA07_P	30	CLK_O+	LA17_CC_P
31	TX1 -	LA07_N	32	CLK_O-	LA17_CC_N
33	SDO +	LA08_P	34	-	-
35	SDO -	LA08_N	36	-	-
37	-	-	38	-	-
39	-	-	40	-	-

We found some small bugs mostly caused by the fact that the system was never tested together with the chip.

Connect PASTA to the readout chain

- Connect PASTA and send the 160 MHz clock \longrightarrow no response.
- Problem: the clock does not reach the chip because of a wrong connection of the LVDS switches on the board.
- Solution: make the proper connection with a wire (for all the LVDS switches).

Current consumption

Possible range:	4.69 - 600	MHz
New frequency:	160	MHz
Calculated:	160.000000	MHz
	Config	

Clk	Digital (mA)	Analog (mA)	Service (mA)
60	23	107	300
80	27	107	300
100	30	107	300
120	33	107	300
140	36	107	300
160	39	107	300

Global Configuration I

ilobal Digital Configuration	Global Analog Configuration
	Front-end configuration
General configuration	Strip configuration
Channel select (CS) as veto	Baseline voltage 31 🗘
	TOT amplifier bias current
 Activate IAC refresh 	Preamplifier output voltage shift 1/ 🗢
AC refresh period: 2^14 clk 🗢	Preampimer teedback current 14 - 14 -
Ch. counter interval: 2^10 clk 🗢	Peaking time adjuster current
Clock settings	Local feedback current DAC
nput clock divider: original 👻	Hysteresis comparator bias current 8 14 11
Clock output	stage 1 stage 2 st
Clock gating for TDC read logic	Ref. voltage for hysteresis comp. 15 😓 9 🜩
Clock gating for TDC write logic	Charge sensitive amp. bias current
Data output	Current buffer bias
Dummy data output	Baseline restorer 30 22 0
Double data rate	TDC configuration
ransmission mode: TXD 👻	Latched comparator voltage
Data format: Full 👻	Transistor cascade voltage 18 \$ 16 \$
Fine time offset: D clk 🗢	pMos nMos
Fine time counter saturates	reference LSB
Enable counting of	
global SEUs	
truncated events (full frame buffer)	
missed events (full event huffer)	

Global Configuration II

oba	Global (Expert) Chai	nnel (Expe	1)	Test Pulse		
lot	al Configuration							
	Item	Pos	Len	Min	Max	Set Value	Read Value A	Analog and digital configuration
1	BLR_Ib	137:141	5	0	31	30	30	is combined. Positions 0-31
2	BLR_Vcas	132:136	5	0	31	22	22	concern the digital and 32-171
3	CB_lb1	127:131	5	0	31	14	14	concern the analog domain.
4	CB_lb2	122:126	5	0	31	21	21	
5	CB Vbias	117:121	5	0	31	10	10	
6	CSA_lb1	112:116	5	0	31	13	13	
7	CSA IbSF	107:111	5	0	31	23	23	
8	Comp Vb	142:146	5	0	31	11	11	
9	Comp Vcas	147:151	5	0	31	25	25	
10	HCGDAC+	99:102	4	0	15	15	15	
11	HCGDAC-	103:106	4	0	15	9	9	
12	HC Ib1	94:98	5	0	31	8	8	
13	HC_lb2	89:93	5	0	31	14	14	
14	HC Ib3	84:88	5	0	31	19	19	
15	IfDAC_IIsb	79:83	5	0	31	13	13	
16	IfDAC Iref	74:78	5	0	31	21	21	
17	Iref cs	162:166	5	0	31	13	13	
18	Iref ratio Isb	167:171	5	0	31	9	9	
19	PREAMP_Ifn	69:73	5	0	31	14	14	
20	PREAMP_lfp	64:68	5	0	31	14	14	
21	PREAMP_Ishift	59:63	5	0	31	17	17	
22	PTA_lbn	54:58	5	0	31	14	14	
23	PTA lbp	49.53	5	0	31	14	14	
24	PTA_Ibuf	44:48	5	0	31	21	21	
25	TAC refresh	4:7	4	0	15	3	3	
26	ToT_Ib	39:43	5	0	31	15	15	
27	Vcas n	152:156	5	0	31	16	16	
28	Vcas_p	157:161	5	0	31	18	18	
29	baseline_voltage	33:38	6	0	63	31	31	
30	ch_ctr_interval	21:24	4	0	15	0	0	
31	clock_divider	8:9	2	0	3	0	0	
32	clock_output_en	31	1	0	1	1	1	
33	count_global_SEU	27	1	0	1	0	0	
34	count_missed_evt	25	1	0	1	0	0	
35	count_trunc_evt	26	1	0	1	0	0	
36	cs_as_veto	29	1	0	1	0	0	
37	ext_pulse_en	3	1	0	1	1	1	
38	fine_ctr_offset	13:20	8	0	255	0	0	
39	fine_ctr_saturate	12	1	0	1	0	0	
40	p_strip_config	32	1	0	1	0	0	

•
2
56
Ź.
9
~
ы
7
з.
ъ.
π.
8
æ.
ē
ž
Ŧ.
÷.
-

Alessandra Lai | Update on the Activities on PASTA | 7 June, 2016

Channel Configuration

ham	Por	Lan	Min	Max	0	1	2	3	. 4	6	8	7	8	0	10	11	12	13	1.4	16	16	17	18 1	0 2	0 21	1 2	23	2.4	26	26	27	28	29	30	31	30	33	24	36	36	37	38	30	10	41	42
HCIDAC e	28:32	5	n	71	0	0	0	0	0	0	0	0	0	0	0	0 1	12	0 1	n r	10		1/ 0	0 0	0 2	0 21	0	0	0	0	0	0	0	0	0	0	02	0	04	0	0	0	0	0.0	40	41	44 0
2 HOLDAC 1	23.27	6	0	31	0	0	0	0	0	0	0	0	0	0	0	0 1	1	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3 11	18:21	4	n	15	8	8	8	8	8	8	8	8	8	8	8	8 1		8 1	8 6	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		8
I fref ratio e	37.40	đ	0	16	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10 1	0 1	0 1	0 1	0 10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Iref ratio t	33.36	4	0	15	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10 1	0 1	0 1	0 1	0 10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
channel en	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
7 count discarded ext	13	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0 1	1	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
B count local SEU	16	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0 1)	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
e court missed ext	14	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0 1	3	0 1	0 0	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0
10 count noise evi	12	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0 1)	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
11 count refreah	15	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0 1	3	0 1	0 0	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0
2 count valid evt	11	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
13 hit validation	5	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1 1		1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
14 paralel sync FF	6	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
15 prediction mode	4	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1 1		1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
16 stop_signal_delay	9:10	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0 1)	0 1	0 0	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
17 sync chain length	7:8	2	0	3	1	1	1	1	1	1	1	1	1	1	1	1 1		1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
18 test mode en	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0 1)	0 1	0 0	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
19 trigger mode	2.3	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0 1)	0 1	0 0	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
20 unused	22	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0 1)	0 1	0 0	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
21 use delay line	17	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1 1		1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
							;	Belec	led it	anı [Ctri+	A: 44	pt sele	oted v	value fi	or all of	annei)																									

Alessandra Lai | Update on the Activities on PASTA | 7 June, 2016

10 19

Send and Readback the Configuration

So far we edited the configuration values but we did not actually send any information to the chip.

To write the configuration to PASTA simply press the related button.

Send Global	Send Channel(s) All channels
Read Global	Read Channel(s) Only 3

Problem with Channel Configuration

The configuration is successfull for channel addresses from 0 to 31, but seems to fail for the other half of the channels.

Channel Configuration																																																
Item	Po	s Le	n Mir	Max	2	0 2	1 2	2 23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	-44	45	45	47	-48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
1 HCLDAC_e	28:	32 5	0	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 HOLDAC t	23.	27 5	0	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0
3 11	18.	21 4	0	15	8	8	8	8	8	8	8	8	8	8	8	8		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
4 Iref_ratio_e	37:	10 4	0	16	10	1 10) 10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
5 Iref ratio t	33.	36 4	0	15	10	1 10	3 10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
6 channel_en	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7 count discarded evt	13	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 count local SEU	16	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9 count_missed_evt	14	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10 count noise evt	12	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 count_refresh	16	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 count valid evt	11	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13 hit_validation	5	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14 parallel sync FF	6	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15 prediction mode	4	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16 stop_signal_delay	9:1	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17 sync chain length	7.8	2	0	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
18 test_mode_en	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19 trigger_mode	2.3	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20 unused	22	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21 use_delay_line	17	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Possible explanation

The channel address is 7 bits long, although you would only need 6 for 64 channels, as PASTA has.

At the moment the LSB is always 0 (in theory PASTA should ignore it). What happens if PASTA does not ignore it, but ignores instead the MSB?

:	sent	inte	rpreted
ch.1	0000010	ch.2	0 000010
ch.2	0000100	ch.4	0 000100
ch.3	0000110	ch.6	0 000110
ch.31	0111110	ch.62	0 111110
ch.32	100000 0	ch.0	1 000000

It would mean that we are able to configure only the channels with address even and < 31.

Configuration of the Internal Test Pulse

PASTA can generate a test pulse internally. Two possibilities:

- Test pulse used directly instead of the discriminator output (digital signal).
- Test pulse fed throught the analog calibration circuit (analog signal).

4	NDulasa	0.0	10	0	1000	Oet value
4	NPuises	0.9	10	U	1025	0
2	Pulse Lenght	10:17	8	0	255	0
3	Pulse Spacing	18:25	8	0	255	0

Configure Analog Test Pulse

	ltem	Pos	Len	Min	Max	Set Value
1	Channel address	8:13	6	0	63	0
2	Enable cal circuit	0	1	0	1	0
3	Probing signals from ch to pad	7	1	0	1	0
Δ	Pulse amplitude	1:6	6	0	63	0

Config	TΡ	Digital
Config	TΡ	Analog

Configure Digital Test Pulse

External Test Pulse

PASTA can receive an external test pulse via the SMA connectors.

- Waveform generator
- Logic analyzer
- \longrightarrow the chip responds to stimuli

To understand how it responds, we need to read out the data.

Summary of Chip Configuration I

Global Configuration

	Command	Address	Data Length		CRC-8	Description
			N_{wr}	N_{rd}		
-	1000	-	172	1	Required	Write global configuration
-	1001	-	-	172	Required	Read global configuration
1	1010	-	26	26	Required	Configure internal test pulse
	1011	-	-	10	Required	Read global counter
1	1100	-	14	1	Required	Write global test congfiguration
	1101			1	Required	Read global test congfiguration

Table 5: Commands for the global configuration

Figure 5: Example of a read command without the Address data

Configuration and readback are succesful.

Summary of Chip Configuration II

Channel Configuration

	Command	Address	Data Length		CRC-8	Description
			N_{wr}	Nrd		
✓	0000	Required	41	41	Required	Write channel configuration
✓	0001	Required	-	41	Required	Read channel configuration
	0010	Required	1	1	Required	Write channel test configuration
	0011	Required	1	1	Required	Read channel test configuration
	0100	Required		10	Required	Read channel counter

Table 4: Commands for the channel configuration

Configuration and readback fail for channel address > 31.

Other remarks

- Problem: SDO has inverted polarity.
- Workaround: invert it logically in the firmware.

Alessandra Lai | Update on the Activities on PASTA | 7 June, 2016

Outlook

- Implement the generation of a test pulse in the firmware.
- Read the data out from the chip and analyze it.
- Fix the problem related to the channel configuration.