

T0 online algorithm using TOF counters

Dominik Steinschaden on behalf of the Panda SciTil group

GSI Darmstadt, 8.6.2016

Motivation

- Decent time information of pbar annihilation with target (=t0) is necessary
 - for TOF, PID, pattern recognition, event sorting, ..
- T0 is needed online even with a limited precision for an event selection
- TOF counters (SciTil and FTOF) have the best time resolutions hence they have a high potential to play an indispensable role to deduce (online) t0.

Basic principle

- For calculation of t0 it needs:
 - tracking information, PID, mass and momentum
- Assuming average values
 - $\Delta t0 \sim 1 \text{ ns}$
- Calculating t0 using the most typical path length and momentum is equivalent to shifting the time stamp distribution by a typical time-of-flight to t0.
 - SciTil
 - Flight path ~ 0.5 1.5 m
 - Flight time ~ 2 6 ns

We study the potential performance of the online t0 calculation using TOF counter, also taking into account the influence of secondary particles

Panda Collaboration Meeting, Dominik Steinschaden, GSI, 8.6.2016

Time stamp distribution of SciTil

- For this study the MC data were generated using
 - Pandaroot, trunk 28975
 - DPM generator (beam momentum = 6.2 GeV/c)
 - Full geometry
- The right sided plot shows the distribution of the MC time stamps in the SciTil
 - Mean = 5.2 ns, σ = 5.0 ns, FWHM = 2.9 ns
 - 80% of the time stamps are located in the interval from 1.8 to 6 ns
 - Slow primaries and secondaries cause a long tail down to > 30 ns

Time stamp distribution of primaries and secondaries

- Time stamp distribution for primary particles ٠
 - Mean = 4.3 ns, $\sigma = 3.8 \text{ ns}$, FWHM = 2.6 ns
 - Slow primaries also cause a long tail
- Time stamp distribution for secondary particles ٠
 - Mean = 5.8 ns, σ = 5.5 ns, FWHM = 3.0 ns
 - ~ 50 % more secondaries then pimaries due to the tail
 - Nevertheless the dominant part of the secondaries is also located at 1.7 – 6 ns
- Secondary particles will be useful rather then ٠ disturbing for t0 calculation
 - Major part are "fast secondaries"
 - Provide a higher statistic per event

Panda Collaboration meeting, Dominik Steinschaden, GSI, 8.6.2016

- The difference in the time stamp distribution originates in the different hit position distribution of the particle types.
- Secondaries have a higher probability to hit a SciTil tile located in a more forward position.

Panda Collaboration Meeting, Dominik Steinschaden, GSI, 8.6.2016

Time stamp distribution for equidistant tiles

- Typical time-of-flight is correlated with the production theta angle at the collision point
 - corrected shift on the time stamps respective to z-position of the hit
- Evaluate the typical time-of-flight for every z-position
 - Detector is sliced into 60 rings of equidistant scintillating tiles
 - The time stamp distribution for every ring was simulated to receive the typical time of flight

Ring of equidistant scintillators

Time stamp distribution for equidistant tiles

- Typical distribution for an equidistant ring
 - Mean = 4.7 ns, Peak = 2.6 ns
 - $\sigma = 4.6 \text{ ns}, \text{FWHM} = 0.3 \text{ ns}$
- For the T0 calculation subtract a defined value from the time stamp accordingly to this z position
 - Mean, Peak position

- Primaries
 - Mean = 4.0 ns, Peak = 2.6 ns
 - $\sigma = 3.5 \text{ ns}, \text{FWHM} = 0.2 \text{ ns}$
- Secondaries
 - Mean = 5.2 ns, Peak = 2.6 ns
 - $\sigma = 5.2 \text{ ns}, \text{FWHM} = 0.2 \text{ ns}$
- Identical Peak positions
- The secondary distribution is influenced by a higher amount of slow particles
 - The majority of the particles is fast and can support an t0 algorithm

Panda Collaboration Meeting, Dominik Steinschaden, GSI, 8.6.2016

9/22

SMI - STEFAN MEYER INSTITUTE

WWW:OEAW.AC.AT/SMI

Time shift parameters

- Mean and peak position as a function of the z position
- The used value of central tendency must be chosen accordingly to the used algorithm to determine t0

Time based simulation

Distribution of measured and peak aligned timestamps

Panda Collaboration Meeting, Dominik Steinschaden, GSI, 8.6.2016

Shifted time stamp distribution

- "Mean-aligned" distribution
 - Mean = 0.06 ns, Peak = -1.9 ns
 - $\sigma = 5.1 \text{ ns}$, FWHM = 0.4 ns
- "Peak-aligned" distribution
 - Mean = 2.5 ns, Peak = 0.0 ns
 - $\sigma = 5.1 \text{ ns}, \text{FWHM} = 0.4 \text{ ns}$

Panda Collaboration meeting, Dominik Steinschaden, GSI, 8.6.2016

Average t0 per event

- combine shifted time stamps of one event to t0
 - mean-aligned
 - Mean = -0.35 ns, Peak = -1.9 ns
 - $\sigma = 3.9 \text{ ns}, \text{FWHM} = 0.5 \text{ ns}$
 - peak-aligned
 - Mean = 2.1 ns, Peak = 0.1 ns
 - $\sigma = 3.9 \text{ ns}, \text{FWHM} = 0.3 \text{ n}$
- the parameter used to shift time stamps has to be related to the algorithm used to calculate the final t0
- So far only by using the SciTil and a very simple algorithm we achieve a t0 time resolution of $\sigma = 3.9$ ns

Panda Collaboration Meeting, Dominik Steinschaden, GSI, 8.6.2016

First time stamp method

- Estimate t0 using first "peak-aligned" time stamp per event
 - Mean = 0.6 ns, Peak = 0.0 ns
 - $\sigma = 2.3 \text{ ns}, \text{FWHM} = 0.3 \text{ ns}$
- $\sigma = 2.3$ ns is achieved

Influences of particle multiplicity in SciTil

- Accuracy is strongly correlated with the particle multiplicity
- First time stamp method
 - $\sigma_1 = 3.7 \text{ ns} \Rightarrow \sigma_{10} = 0.4 \text{ ns}$
- Including time stamps of the FTOF (and other detectors) increase the accuracy further

Time stamp multiplicity in TOF counters

- For ~ 4% of the events no time stamps
- For about 1/3 of the events 1 to 2 hits in the TOF counters
- For 2/3 of the events 3 or more Hits are registered
- For this study the DPM generator was used
 - The particle multiplicity for wanted events may differ from the background
 - Interesting events may have a higher particle multiplicity
 - $p\overline{p} \rightarrow p\overline{p}$

Half sample mode

- No previous event separation in online reconstruction
- Exploiting the Peak structure
 - deliver good results
 - Weakly effected by event mixing effects
- "half sample mode" (HSM)
 - Simple cluster finding algorithm
 - Search for the shortest interval which is containing half of the timestamps in a defined interval
 - Iteratively repeat on the so found intervals till only 2 time stamps are left
 - The first one is chosen as T0 for the event

Half sample mode

HSM for single events

- Mean = 1.3 ns, Peak = 0.1 ns
- $\sigma = 3.4 \text{ ns}, \text{FWHM} = 0.4 \text{ n}$
- Performance located between average and first time stamp method
- Advantage of HSM (and similar) is the functionality in a continuously read out

Suppress slow particles

- Distinguish between fast and slow particles by energy loss in SciTil
 - No correlation between the energy loss and the flight time of the particles is observed

Summary

- We studied an simple and fast algorithm to estimate t0 based on the timing information of the TOF counters
 - Due to the limited scope of this study only the SciTil was taken into account
- It is evident that the secondaries provide an additional and useful information for the t0 estimation
- It was shown that T0 can be calculated by using the position information of the SciTil and the corresponding typical time of flight
 - Using the "first time stamp method" a t0 resolution of $\sigma = 2.3$ ns was achieved.
- Using the additional energy loss information provided by the SciTil lead to no enhancement so far
- Increase in accuracy is expected once the FTOF information is taken into account

Thank you for your attention