Unitarily Transformed Interactions and Three-Body Forces

Sabine Reinhardt

Institut für Kernphysik, TU Darmstadt

Overview

- Motivation
- SRG-Mapping
 - Correlation Functions
- Three-Body Interaction
- Results
 - Hartree-Fock
 - Many-Body Perturbation Theory
- Outlook: N3LO Interaction
- Summary

Motivation

Hartree-Fock with Two-Body Interactions

- SRG
- UCOM (SRG-generated)
- UCOM (variation)
- SRG-generated UCOM and variationally generated UCOM:
 - realistic trends of binding energies
 - but too small values
 - charge radii underestimated
 - \rightarrow repulsive three-body interaction

SRG-Mapping

Correlation Functions

- derive UCOM correlation functions $R_+(r)$ and $\vartheta(r)$ from SRG evolution:
 - (i) perform SRG evolution
 - \rightarrow matrix elements for certain partial wave
 - (ii) solve two-body problem using evolved matrix elements
 - (iii) map evolved two-body solution onto initial eigenstate:

 $\left| \Phi^{(0)}
ight
angle = \mathrm{C} \left| \Phi^{(lpha)}
ight
angle = \mathrm{C}_\Omega \mathrm{C}_r \left| \Phi^{(lpha)}
ight
angle$

 \rightarrow obtain correlation functions for UCOM generators

SRG

Correlation Functions for AV18

Tensor Correlation Functions

 SRG-generated correlation functions: negative contributions at larger distances

- good agreement of short-range behavior
- range depending on flow parameter

Correlation Functions

Tensor Correlation Functions

- short-range behavior for central correlator: OK
- SRG-generated correlation functions: long-ranged oscillations
- tensor correlator: double-peak at short distances
- energy minimization (AV18)
 ___ SRG-mapping (N3LO)

Correlation Functions

Tensor Correlation Functions

energy minimization for AV18 and N3LO

- small negative contribution for N3LO in central correlator
- N3LO: longer range of correlators
- shift of peaks towards larger radii

Three-Body Interaction

Ideal World

- use chiral EFT interaction including three-body terms
- perform UCOM/SRG transformation consistently for two- and three-body forces
- calculate three-body matrix elements...

Three-Body Interaction

Ideal World

- use chiral EFT interaction including three-body terms
- perform UCOM/SRG transformation consistently for two- and three-body forces
- calculate three-body matrix elements...

Pragmatic Approach

- computationally not feasible for reasonable model space sizes
- include effective three-body interaction
 - regularized contact interaction
 - finite-range interaction

Three-Body Interaction

Contact Interaction

- repulsive three-body interaction
 - \rightarrow increased charge radii
 - \rightarrow decreased binding energies
- simplest ansatz: contact interaction:

$${
m V}_{
m 3N} = C_{
m 3N} \, \delta^{(3)}({
m x_1} - {
m x_2}) \, \delta^{(3)}({
m x_1} - {
m x_3})$$

- calculation of matrix elements in harmonic-oscillator basis
- regularization via cut-off for three-body states:

 $e_1 + e_2 + e_3 \le e_{3\max}$ (e = 2n + l)

Hartree-Fock Results

Many-Body Perturbation Theory

Formulation

- no long-range correlations with Hartree-Fock
- many-body perturbation theory
 - second order energy correction
- computationally demanding:
 - need to calculate three-body matrix elements
 - sums over unoccupied states are time-consuming

Many-Body Perturbation Theory

Outlook: N3LO Interaction

$$e_{max} = 12$$

 $e_{3max} = 10$
Hartree-Fock:
• $C_{3N} = 1500 \text{ MeV fm}^6$
• $C_{3N} = 2500 \text{ MeV fm}^6$
Perturbation Theory:
• $C_{3N} = 1500 \text{ MeV fm}^6$
• $C_{3N} = 2500 \text{ MeV fm}^6$

Outlook: N3LO Interaction

Summary

Summary

- SRG-generated UCOM correlators
 - correlation functions
- effective three-body interaction
 - contact interaction with regularization
 - Hartree-Fock for different flow parameters
 - Many-Body Perturbation Theory
- calculations with N3LO interaction
- alternative: finite-range three-body interaction