Mean-Field and Pairing Calculations in the UCOM Framework

Heiko Hergert

Institut für Kernphysik, TU Darmstadt

Overview

- Reminder: UCOM and SRG Basics
- Hartree-Fock and Perturbation Theory with V_{UCOM}
- Pairing in the UCOM Framework
 - Hartree-Fock-Bogoliubov & Projection
 - Quasiparticle RPA
- Conclusions

Phenomenology binding energies, radii nuclear matter

Phenomenology binding energies, radii nuclear matter

Skyrme, Gogny, Relativistic Mean Field

Phenomenology binding energies, radii nuclear matter

QCD

chiral EFT

Skyrme, Gogny, Relativistic Mean Field "EFT for DFT"

Furnstahl, Bogner et al.

H. Hergert – Institut für Kernphysik, TU Darmstadt – EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Phenomenology

binding energies, radii

nuclear matter

Pairing

Phenomenological,

NN Interaction,...

Skyrme, Gogny,

Relativistic Mean Field

QCD

QCD

Image: Comparison of the provided in the provided i

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Issues of DFT

- X description of exotic nuclei and spectroscopic observables is lacking
- inconsistent treatment of particle-hole and particle-particle channel treated if separate forces are used
- Iocal density approximation, gradient expansion essentially uncontrolled
- **X** technical & conceptual difficulties due to **non-analytic terms**
- Dobaczewski et al., Phys. Rev. C76, 054315 (2007)
 Duguet, Lacroix, Bender et al., arXiv:0809.2041, 0809.2045, 0809.2049
- **X** fits of phenomenological functionals obscure underlying physics

Issues of DFT

- X description of exotic nuclei and spectroscopic observables is lacking
- inconsistent treatment of particle-hole and particle-particle channel treated if separate forces are used
- Iocal density approximation, gradient expansion essentially uncontrolled
- **X** technical & conceptual difficulties due to **non-analytic terms**
- Dobaczewski et al., Phys. Rev. C76, 054315 (2007)
 Duguet, Lacroix, Bender et al., arXiv:0809.2041, 0809.2045, 0809.2049
- **X** fits of phenomenological functionals obscure underlying physics

consistent Hamiltonian approach avoids most problems

UCOM and SRG Basics

Modern Effective Interactions

phase-shift equivalent interaction from unitary transformation of the Hamiltonian

Unitary Correlation Operator Method

transformed Hamiltonian

 $\widetilde{\mathbf{H}} = \mathbf{C}_r^{\dagger} \mathbf{C}_{\Omega}^{\dagger} \mathbf{H} \mathbf{C}_{\Omega} \mathbf{C}_r$

central correlations: radial shift

$$\mathrm{C}_r = \exp(-i\sum_{i < j} \mathrm{g}_{r,ij}[s(r_{ij})])$$

tensor correlations: angular shift

$$\mathrm{C}_{\Omega} = \exp(-i\sum_{i < j} \mathrm{g}_{\Omega,ij}[artheta(r_{ij})])$$

Similarity Renormalization Group

- transformed Hamiltonian $\widetilde{H}(\alpha) = C^{\dagger}(\alpha)HC(\alpha)$
- evolution via RG flow equation $\frac{d}{d\alpha} \widetilde{H}(\alpha) = \left[\eta(\alpha), \widetilde{H}(\alpha)\right]$
- dynamical generator $\eta(\alpha) = \frac{1}{2\mu} [\vec{q}^2, \widetilde{H}(\alpha)]$

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Tjon line: E(⁴He) vs. E(³H) for phase-shift equivalent NNinteractions

■ **Tjon line**: *E*(⁴He) vs. *E*(³H) for phase-shift equivalent NN-interactions

- Tjon line: E(⁴He) vs. E(³H) for phase-shift equivalent NNinteractions
- \blacksquare use $\bar{\alpha}$ / range of C_{Ω}
 - \bullet test dependence of V_{UCOM}
 - tune contributions of net 3N force

Hartree-Fock and Many-Body Perturbation Theory

Hartree-Fock: UCOM vs. SRG

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Hartree-Fock: UCOM vs. SRG

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Hartree-Fock & Perturbation Theory

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Hartree-Fock & Perturbation Theory

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Hartree-Fock & Perturbation Theory

H. Hergert – Institut für Kernphysik, TU Darmstadt – EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Pairing in the UCOM Framework Hartree-Fock-Bogoliubov

HFB Theory Overview

Bogoliubov Transformation

$$egin{aligned} eta_k^\dagger &= \sum_q U_{qk} \mathrm{c}_q^\dagger + V_{qk} \mathrm{c}_q \ eta_k &= \sum_q U_{qk}^* \mathrm{c}_q + V_{qk}^* \mathrm{c}_q^\dagger \end{aligned}$$

where

$$\{\boldsymbol{\beta}_{k}, \boldsymbol{\beta}_{k'}\} \stackrel{!}{=} \{\boldsymbol{\beta}_{k}^{\dagger}, \boldsymbol{\beta}_{k'}^{\dagger}\} \stackrel{!}{=} \mathbf{0} \\ \{\boldsymbol{\beta}_{k}, \boldsymbol{\beta}_{k'}^{\dagger}\} \stackrel{!}{=} \delta_{kk'}$$

HFB Densities & Fields

$$egin{aligned} &
ho_{kk'} \equiv ig\langle \Psi ig| \, \mathbf{c}_{k'}^\dagger \mathbf{c}_k \, ig| \Psi ig
angle = (V^*V^T)_{kk'} \ &\kappa_{kk'} \equiv ig\langle \Psi ig| \, \mathbf{c}_{k'} \mathbf{c}_k \, ig| \Psi ig
angle = (V^*U^T)_{kk'} \ &\Gamma_{kk'} = \sum_{qq'} igg(rac{2}{A} ar{\mathbf{t}}_{\mathrm{rel}} + ar{\mathbf{v}} igg)_{kq',k'q} \,
ho_{qq'} \ &\Delta_{kk'} = \sum_{qq'} igg(rac{2}{A} ar{\mathbf{t}}_{\mathrm{rel}} + ar{\mathbf{v}} igg)_{kk',qq'} \, \kappa_{qq'} \end{aligned}$$

HFB Theory Overview

Bogoliubov Transformation

$$egin{aligned} eta_k^\dagger &= \sum_q U_{qk} ext{c}_q^\dagger + V_{qk} ext{c}_q \ eta_k &= \sum_q U_{qk}^* ext{c}_q + V_{qk}^* ext{c}_q^\dagger \end{aligned}$$

where

$$egin{aligned} &\left\{eta_k,eta_{k'}
ight\} \stackrel{!}{=} \left\{eta_k^\dagger,eta_{k'}^\dagger
ight\} \stackrel{!}{=} 0 \ &\left\{eta_k,eta_{k'}^\dagger
ight\} \stackrel{!}{=} \delta_{kk'} \end{aligned}$$

HFB Densities & Fields

$$egin{aligned} &
ho_{kk'} \equiv ig\langle \Psi ig| \, \mathbf{c}_{k'}^{\dagger} \mathbf{c}_{k} \, ig| \Psi ig
angle = (V^{*}V^{T})_{kk'} \ &\kappa_{kk'} \equiv ig\langle \Psi ig| \, \mathbf{c}_{k'} \mathbf{c}_{k} \, ig| \Psi ig
angle = (V^{*}U^{T})_{kk'} \ &\Gamma_{kk'} = \sum_{qq'} \left(rac{2}{A} ar{\mathbf{t}}_{\mathrm{rel}} + ar{\mathbf{v}}
ight)_{kq',k'q}
ho_{qq'} \ &\Delta_{kk'} = \sum_{qq'} \left(rac{2}{A} ar{\mathbf{t}}_{\mathrm{rel}} + ar{\mathbf{v}}
ight)_{kk',qq'} \kappa_{qq'} \end{aligned}$$

Energy

$$E[
ho,\kappa,\kappa^*] = rac{ig\langle\Psiigert\,\mathrm{H}igert\Psiig
angle}{ig\langle\Psiigert\Psiig
angle} \equiv rac{1}{2}\left(\mathrm{tr}\;\Gamma
ho - \mathrm{tr}\;\Delta\kappa^*
ight)$$

HFB Equations

$$\left(\mathcal{H}-\lambda\mathcal{N}
ight)egin{pmatrix}U\V\end{pmatrix}\equiv egin{pmatrix}\Gamma-\lambda&\Delta\-\Delta^*&-\Gamma^*+\lambda\end{pmatrix}egin{pmatrix}U\V\end{pmatrix}=Eegin{pmatrix}U\V\end{pmatrix}$$

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Gap Definitions

Gaps from Experiment

■ binding energy differences; e.g.

$$\Delta^{(3)}(N) = (-1)^N \frac{1}{2} \left(E(N+1) - 2E(N) + E(N-1) \right)$$

Common Definitions of Theoretical Gap

- lowest canonical state: Δ_{μ} for state with minimal canonical E_{μ}
- "correlated" average (~ averaged **pairing energy**)

$$ig \langle \Delta ig
angle = rac{\sum_{m \mu} \Delta_{m \mu} u_{m \mu} v_{m \mu}}{\sum_{m \mu} u_{m \mu} v_{m \mu}}$$

Gap Definitions

Gaps from Experiment

■ binding energy differences; e.g.

$$\Delta^{(3)}(N) = (-1)^N \frac{1}{2} \left(E(N+1) - 2E(N) + E(N-1) \right)$$

Common Definitions of Theoretical Gap

- lowest canonical state: Δ_{μ} for state with minimal canonical E_{μ}
- "correlated" average (~ averaged **pairing energy**)

$$ig \langle \Delta ig
angle = rac{\sum_{m \mu} \Delta_{m \mu} u_{m \mu} v_{m \mu}}{\sum_{m \mu} u_{m \mu} v_{m \mu}}$$

X Such theoretical gaps are not observables!

Center-of-Mass Correction

V_{UCOM} as a Pairing Force

variation of $\bar{\alpha}$

- small effect due to stability of ¹S₀ matrix elements
- residual reduction of gaps through partial wave mixing by Talmi transformation

V_{UCOM} as a Pairing Force

variation of $\bar{\alpha}$

- small effect due to stability of ¹S₀ matrix elements
- residual reduction of gaps through partial wave mixing by Talmi transformation

- Image of the second second
 - Gogny D1S/SLy4 + AV14 pairing
 (e.g. F. Barranco et al., EPJ A21 (2004), 57)
 - $m X \sim 50\%$ smaller than SLy4 + $V_{
 m low-k}$ study by Lesinski & Duguet (arXiv: 0809.2895)

$V_{ m UCOM}$ vs. $V_{ m SRG}$

• compare with V_{SRG} (similar properties as $V_{\text{low-}k}$)

center-of-mass treatment ?

$V_{ m UCOM}$ vs. $V_{ m SRG}$

• compare with V_{SRG} (similar properties as $V_{\text{low-}k}$)

✓ different center-of-mass treatment explains discrepancy

Pairing in the UCOM Framework Fully Self-Consistent Hartree-Fock-Bogoliubov

Non-Central Interactions

Non-Central Interactions

Non-Central Interactions

H. Hergert – Institut für Kernphysik, TU Darmstadt – EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Canonical Single-Particle Spectra

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

- pairing is suppressed due to low level density at Fermi surface
- suppression of theoretical gap in valence shells with high j
- Inear density dependence:

$$V_{\rho} = \frac{C_{3N}}{6} (1 + P_{\sigma}) \rho \left(\frac{1}{2}(\vec{r}_1 + \vec{r}_2)\right) \delta^3 (\vec{r}_1 - \vec{r}_2)$$
H. Hergert – Institut für Kernphysik, TU Darmstadt – EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Gaps

- pairing is suppressed due to low level density at Fermi surface
- suppression of theoretical gap in valence shells with high j
- Inear density dependence:

$$V_{\rho} = \frac{C_{3N}}{6} (1 + P_{\sigma}) \rho \left(\frac{1}{2}(\vec{r}_1 + \vec{r}_2)\right) \delta^3 (\vec{r}_1 - \vec{r}_2)$$
H. Hergert – Institut für Kernphysik, TU Darmstadt – EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Projected Energy

$$E(N_0) = rac{ig\langle \Psi igert \operatorname{HP}_{N_0} igert \Psi ig
angle}{ig\langle \Psi igert \operatorname{P}_{N_0} igert \Psi ig
angle} = rac{1}{2\pi ig\langle \operatorname{P}_{N_0} ig
angle} \int_0^{2\pi} d\phi ig\langle \Psi igert \operatorname{He}^{i\phi(\mathrm{N}-N_0)} igert \Psi ig
angle$$

Variation of Projected Energy

$$egin{aligned} \delta E(N_0) &= rac{1}{2\pi ig\langle \mathbf{P}_{N_0} ig
angle} \int_0^{2\pi} d\phi \;ig\langle e^{i\phi(\mathbf{N}-N_0)} ig
angle \left\{ \delta ig\langle \mathbf{H} ig
angle_{\phi} - \left(E(N_0) - ig\langle \mathbf{H} ig
angle_{\phi}
ight) \delta \log ig\langle e^{i\phi\mathbf{N}} ig
angle
ight\} \ & & \langle \mathbf{H} ig
angle_{\phi} \equiv ig\langle \mathbf{H} e^{i\phi\mathbf{N}} ig
angle / ig\langle e^{i\phi\mathbf{N}} ig
angle \end{aligned}$$

Variation of Projected Energy

$$egin{aligned} \delta E(N_0) &= rac{1}{2\pi ig\langle \mathrm{P}_{N_0} ig
angle} \int_0^{2\pi} d\phi \;ig\langle e^{i\phi(\mathrm{N}-N_0)} ig
angle \left\{ \delta ig\langle \mathrm{H} ig
angle_{\phi} - \left(E(N_0) - ig\langle \mathrm{H} ig
angle_{\phi}
ight) \delta \log ig\langle e^{i\phi\mathrm{N}} ig
angle
ight\} \ & \left\langle \mathrm{H} ig
angle_{\phi} \equiv ig\langle \mathrm{H} e^{i\phi\mathrm{N}} ig
angle / ig\langle e^{i\phi\mathrm{N}} ig
angle \end{aligned}$$

- Structure of HFB equations is preserved!
- managable computational effort for variation after projection (VAP)
- implement with care: subtle cancellations between divergences of direct, exchange, and pairing terms

Variation of Projected Energy

$$egin{aligned} \delta E(N_0) &= rac{1}{2\pi ig\langle {
m P}_{N_0} ig
angle} \int_0^{2\pi} d\phi \;ig\langle e^{i\phi({
m N}-N_0)} ig
angle \left\{ \delta ig\langle {
m H} ig
angle_{\phi} - \left(E(N_0) - ig\langle {
m H} ig
angle_{\phi}
ight) \delta \log ig\langle e^{i\phi{
m N}} ig
angle
ight\} \ & \langle {
m H} ig
angle_{\phi} \equiv ig\langle {
m H} e^{i\phi{
m N}} ig
angle / ig\langle e^{i\phi{
m N}} ig
angle \end{aligned}$$

Structure of HFB equations is preserved!

managable computational effort for variation after projection (VAP)

 implement with care: subtle cancellations between divergences of direct, exchange, and pairing terms

X density-dependent interaction:

complex transition density has **poles** (serious problem for projection methods, GCM, ...)

^{CSF} Duguet, Lacroix, Bender et al., **arXiv**:0809.2041, 0809.2045, 0809.2049

PNP: Gaps

- consistent inclusion of all two-body terms (crucial for particlenumber projection)
- projection includes additional pairing correlations
- sizable effects at (major) shell closures

PNP: Density-Dependent Interaction

PNP: Density-Dependent Interaction

Inear density-dependence: isolated poles, check by projecting from neighbouring nuclei

PNP: Density-Dependent Interaction

- Inear density-dependence: isolated poles, check by projecting from neighbouring nuclei
- implement explicit correction for isolated spurious poles Duguet, Lacroix et al.

Pairing in the UCOM Framework
Quasiparticle RPA

 $(\bar{\alpha} [\,\mathrm{fm}^4], C_{3N} [\,\mathrm{GeV}\,\mathrm{fm}^6]) = (0.04, 0.0)$

H. Hergert – Institut für Kernphysik, TU Darmstadt – EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

 $(\bar{\alpha} [\,\mathrm{fm}^4], C_{3N} [\,\mathrm{GeV}\,\mathrm{fm}^6]) = (0.04, 0.0)$

H. Hergert – Institut für Kernphysik, TU Darmstadt – EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

 $(\bar{\alpha} [\,\mathrm{fm}^4], C_{3N} [\,\mathrm{GeV}\,\mathrm{fm}^6]) = (0.04, 0.0) = (0.04, 1.2)$

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

<i>E</i> [MeV]	TRK [%]	$N_{ m neut}[\%]$
12.86	~ 9	20.2
15.03	\sim 14	52.2
15.43	~ 27	24.7

$$(\bar{\alpha} [\,\mathrm{fm}^4], C_{3N} [\,\mathrm{GeV}\,\mathrm{fm}^6]) = (0.04, 0.0) = (0.04, 1.2)$$

<i>E</i> [MeV]	TRK [%]	$N_{ m neut}\left[\% ight]$
12.86	~ 9	20.2
15.03	\sim 14	52.2
15.43	~ 27	24.7
6.86	~ 5	94.7
$ u 2s_{1/2} $	$ ightarrow u 2 p_{3/2}$	36.0
$ u 1 d_{3/2}$	$ ightarrow u 2 p_{1/2}$	17.6
$ u 2 s_{1/2} $	$ ightarrow u 2 p_{1/2}$	10.6

 $(\bar{\alpha} [\,\mathrm{fm}^4], C_{3N} [\,\mathrm{GeV}\,\mathrm{fm}^6]) = (0.04, 0.0) = (0.04, 1.2)$

Pygmy Dipole Resonance: significantly enhanced collectivity in QRPA

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

<i>E</i> [MeV]	TRK [%]	$N_{ m neut}$ [%]
12.86	~ 9	20.2
15.03	~ 14	52.2
15.43	~ 27	24.7
6.86	~ 5	94.7
$ u 2 s_{1/2}$	$ ightarrow u 2 p_{3/2}$	36.0
$ u 1 d_{3/2}$	$ ightarrow u 2 p_{1/2}$	17.6
$ u 2 s_{1/2}$	$ ightarrow u 2 p_{1/2}$	10.6

 $(\bar{\alpha} [\,\mathrm{fm}^4], C_{3N} [\,\mathrm{GeV}\,\mathrm{fm}^6]) = (0.04, 0.0) = (0.04, 1.2) \dots (0.05, 1.2)$

Pygmy Dipole Resonance: significantly enhanced collectivity in QRPA

H. Hergert - Institut für Kernphysik, TU Darmstadt - EENEN 09 Workshop, GSI Darmstadt, 09. 02. 2009

Conclusions

Conclusions

Status

- fully consistent framework for HF(B), PNP, like-particle & chargeexchange (Q)RPA
- Inclusion of 3N forces: density-dependent interaction for HFB, QRPA, ...

Outlook & Challenges

- density-dependent interactions in projection methods, GCM, ... (multi-reference scenarios)
- dressed/renormalized single-particle energies e.g. selfconsistent coupling to surface modes (HFB+QRPA)
- odd nuclei

Epilogue...

My Collaborators

R. Roth, P. Papakonstantinou, A. Günther, S. Reinhardt

Institut für Kernphysik, TU Darmstadt

T. Neff, H. Feldmeier

Gesellschaft für Schwerionenforschung (GSI)

References

- R. Roth, S. Reinhardt, H. Hergert, Phys. Rev. C77, 064003 (2008)
- H. Hergert, R. Roth, Phys. Rev. C75, 051001(R) (2007)
- N. Paar, P. Papakonstantinou, H. Hergert, and R. Roth, Phys. Rev. C74, 014318 (2006)
- R. Roth, P. Papakonstantinou, N.Paar, H. Hergert, T. Neff, and H. Feldmeier, Phys. Rev. C73, 044312 (2006)
- http://crunch.ikp.physik.tu-darmstadt.de/tnp/

