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(from RIA web page)

Nuclear many-body problem

A
Lattice QCD: 
A=0,1,2,...

NCSM, Faddeev-Yakubovsky, GFMC ...:
A=3-16

}
}
}}

coupled cluster: 
A=16-100

Density Functional Theory: 
A>100

ChEFT interactions, 
3N interactions

(SN1987a)
Experimental programs: Isolde, ISAC, FAIR, RIA, ...
Theoretical predictions?

?
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Phenomenological approach

Several NN force models describe the data ( ~ 4000 data) up to the pion 
production threshold perfectly using ~ 40 parameters

Predictions based on NN forces:
                                       
 Many low energy few-nucleon observables are well 
    & model independently described !

Scattering observables at higher energies
    & binding energies are model dependent and not well described  

(see e.g. Witała et al., 2001)

3 MeV

3H 4He

CD-Bonn -8.013 -26.23

AV18 -7.628 -24.25

Nijm I -7.741 -24.99

Nijm II -7.659 -24.55

Expt -8.482 -28.30

(see e.g. A.N. et al., 2002)

3NF’s are quantitatively important...

 ... but have not been understood yet
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NN interactions can be augmented by phenomenological 3N interactions (2π-exchange)
usually the 3N force is adjusted so that the 3H binding energy is described correctly
                

These phenomenological combinations are very useful to identify signatures of 3NF’s
      triggered a lot of experiments for pd scattering (RIKEN, KVI, IUCF, ...)
         

none of the phenomenological models describes all the data!

A systematic approach that leads to consistent NN and 3N forces is necessary
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Phenomenological 3NF’s
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3NF important for nuclei - improvement of 3NF’s is required !   

Guidance is necessary to improve 3NF’s (many structures!)
Extension to more complex nuclei becomes more and more involved!  
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Nuclear structure & phenomenological 3NF’s
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EFT of QCD: chiral perturbation theory

LQCD = q̄ i /D q −
1

2
Tr GµνGµν

− q̄ m q

QCD & approximate 
chiral symmetry

spontaneously & explicitly 
broken chiral symmetry

mπ ! Λχ ≈ 1 GeV

Goldstone bosons: pions

Effective Field Theory of QCD:
     relevant degrees of freedom
           nucleons & pions

    expansion in        

                        

 Chiral Perturbation Theory (ChPT)
     
    „power counting“ 
      a systematic scheme to identify 
      a finite numbers of diagrams 
      contributing at a given order   

Q

Λχ

Q ≈ mπ, typical momentum

symmetries
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EFT allows to understand pion mass dependence of nuclear observables
            connections to lattice QCD results
 

EFT can be applied to different strong interaction reactions
            reveals connections of different processes,
            connects NN, 3N, 4N ... interactions 

                                                                                              πN
QCD              ChEFT  involving π,N,...                   π production
                                                                                                ....
                                                                                               nuclei
                                                                                              

pion mass dependence                                              symmetries (chiral symmetry)

February 09, 2009 Page

EFT of QCD: chiral perturbation theory
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„power counting“: 
The infinite number of possible diagrams can be ordered, so that only a finite number 
contributes at each order.

If this was strictly true, we would not have bound states within this framework.

E.g chiral order of well-known π-exchange

                                                                                      diagram contributes 

We naively find the 1π-exchange in leading order, and the 2π-exchange in subleading, etc.    

Naive estimate of 1π- & 2π-exchange

v = −4 + 2N + 2L +
∑

i

(

di +
ni

2
− 2

)

∆i = di +
ni

2
− 2 = 0

N = 2, L = 0

ν = −4 + 2 · 2 + 2 · 0 + 2 · 0 = 0

N = 2, L = 1

ν = −4 + 2 · 2 + 2 · 1 + 2 · 0 = 2

for πNN vertices
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Time-ordered perturbation theory for 2π-exchange

1) irreducible diagram

                                   without purely two nucleon intermediate states
              

                                   propagators contribute 

                                   1/Q is in agreement with the power counting estimate 

2) reducible diagram
                                   with purely two nucleon intermediate states

                                   „l“ propagator contributes

                                  There is an enhancement of order m/Q (m nucleon mass)!

Solution: apply counting to irreducible diagrams which then define a potential

Weinberg‘s observation

1

Ej + iε − Ek,l,m
∝

1

Q2

2m
+ mπ

∝

1

Qk

l

m
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1π exchange determines the long range part of the interaction
      (confirmed by, e.g., extraction of mπ from NN data, see Stoks et al., 1993) 

Including 2π exchange reduce the # of boundary conditions in new PSA      
     (Rentemeester et al., 1999) 

3NF’s are quantitatively important to describe nuclei 
            many observables are sensitive to 3NF structure

4NF‘s appear in N3LO (Epelbaum 2006,2007)

     3NF structure challenges chiral approach
                    &  3NF required for nuclear structure/reactions 

Chiral forces in LO,NLO and N2LO
(

Q

Λ

)0 (

Q

Λ

)2
(

Q

Λ

)3

LO: NLO: NNLO:
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Regularization

The ChPT potentials  need regularization to obtain a well define LS equation

 
 

In practice:   Λ ~ 500 - 600 MeV              

                             ChPT potentials are very soft / low momentum

                             fast convergence in many numerical calculations     ✔

Higher Λ are possible, but require additional contact interactions

                                          on-going controversy, problem of singular interactions  

Do small Λ remove physically relevant degrees of freedom for nuclear physics ?

V (p, p′) → e
−

(

p

Λ

)n

V (p, p′) e
−

(

p
′

Λ

)n

or correspondingly for 3NF
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Binding energies for 3H (NN forces only)
3H binding energies are based on NN forces only
      (LO from AN, Timmermans, van Kolck, 2005
       NLO and N2LO from Epelbaum, Glöckle, Meißner,  2005,
       N3LO from Entem, Machleidt, 2003)

Eb [MeV] V [MeV] ΔEb [keV] |ΔEb/V| [%]

LO 500 / no loops -7.50 -51.8 1430 3.0 (7.0)

600 / no loops -6.07

NLO 400 / 700 -8.46 650 1.6 (0.5)

550 / 700 -7.81 -41.1

N2LO 450 / 700 -8.42 -38.3 530 1.3 (0.5)

600 / 700 -7.89

N3LO 500 / DR -7.84 -42.3 40 0.1 (0.03)

600 / DR -7.80

Λ/Λ̃ [MeV]

“power counting” estimates in brackets qualitatively agree    ✓

N3LO leads to a very small cutoff dependence already for  Λ ≈ 500 MeV !
12
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Leading 3NF appears in N2LO (van Kolck, 1994)

N2LO:                                       subleading 2π exchange (c1, c3, c4) 
                                                      coefficients linked to NN force  (✓)

                                                     1π exchange + contact 3NF term (     cD)
                                                     3N contact interaction (      cE)

Adding  N2LO 3N force

cD cE

N3LO  3NF’s are partly formulated and are being implemented (Bernard et al.,2008)
                                                                                              

In the following we augment the N3LO NN interaction by only N2LO 3N forces! 
                            (omitted contact interactions are of order (Q/Λ)5)

13
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Status ci constants
How well do we know the strength of the subleading πN vertices

ci constants link 2π-exchange NN-force and πN scattering

Note: there are sizable error bars !

Determination from πN scattering and fit to NN data agree qualitativly:
            connection of subleading 2π-exchange and πN supported!

but: some determinations are highly controversial
        sensitivity of the NN data is small
        c1  is usually not extracted from NN data, but input to the analysis 

c1 c3 c4

Rentmeester et al. PRC 67, 044001 -0.76 -4.78 3.96 NN

Büttiker et al. NPA 668, 97 -0.81 -4.70 3.40 πN

Fettes et al. NPA 640, 199 -1.23 -5.94 3.47 πN

Meißner, talk at TRIUMF -0.9 -4.7 3.5 πN

Entem et al. PRC 66,014002 -0.81 -3.40 3.40 NN

Entem et al. PRC 68,041001(R) -0.81 -3.20 5.40 NN

✓

c1, c3, c4

(red=input to analysis)

14
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Here, we use the 3H and 4He binding energies to fix the strength of the 3NF counter 
terms (other methods are possible, e.g. using  3H  and 2and)

we find two solutions that describe the 3N and 4N binding energies equally well

February 09, 2009 Page

Determination of cD and cE

cD cE

3NF-A -1.11 -0.66

3NF-B 8.14 -2.02

4He binding energy

15

cD cE

from 3H binding energy
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3NF and NN expectation values for 4He 
3NF contribution is or the order of the power counting estimate of 2 %  ✓

3NF contributions 

Eb [MeV] VNN [MeV] V123 [MeV] |V123 /VNN| [%]

N2LO 450 / 700 -27.65 -84.56 -1.11 1.3

600 / 700 -28.57 -93.73 -6.83 7.3

N3LO 500 / DR-3NF-A -28.27 -99.45 -4.06 4.1

500 / DR-3NF-B -28.24 -98.92 -7.10 7.2

Λ/Λ̃ [MeV]

Summary: 

Expectation values of chiral NN and 3NF’s  are consistent with the power counting

Especially for N3LO, the cutoff values seem to be large enough to predict binding energies

                   Ready to explore p-shell nuclei to identify possible sensitivities to 3NF’s 

16
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p-shell nuclei (NCSM)

Survey of A=6,10-13 nuclei 
revealed a few observables that 
are sensitive to cD/cE
    (Navrátil et al., PRL (2007))

- 3H described for all cD

- green area accommodates 
    B(E2,10B) and Q(6Li) 

- other observables are either 
   insensitive to variation of cD or 
   are consistently described

(Note: these calculations 
have been regulated 
restricting the momentum 
transfer!) 

due to the lack of an in-depth three-nucleon scattering
phase shift analysis. We therefore investigate sensitivity
of the A> 3 nuclei properties to the variation of the con-
strained LECs. Our approach differs in two aspects from
the first NCSM application of the chiral NN ! NNN in-
teractions in Ref. [12] which presents a detailed investiga-
tion of 7Li. First, we introduce a regulator depending on the
momentum transfer in the NNN terms which results in a
local chiral NNN interaction. Second, we do not use ex-
clusively the 4He binding energy as the second constraint
on the cD and cE LECs.

The NCSM casts the diagonalization of the infinite
dimensional many-body Hamiltonian matrix as a finite
matrix problem in a harmonic oscillator (HO) basis with
an equivalent ‘‘effective Hamiltonian’’ derived from the
original Hamiltonian. The finite matrix problem is defined
by Nmax, the maximum number of oscillator quanta shared
by all nucleons above the lowest configuration. We solve
for the effective Hamiltonian by approximating it as a 3-

body interaction [10,11] based on our chosen chiral NN !
NNN interaction. With this ‘‘cluster approximation,’’ con-
vergence is guaranteed with increasing Nmax.

It is important to note that our NCSM results through
A " 4 are fully converged in that they are independent of
the Nmax cutoff and the @! HO energy. For heavier sys-
tems, we characterize the approach to convergence by the
dependence of the results on Nmax and @!.

Figure 1 shows the trajectories of the two LECs cD # cE
that are determined from fitting the binding energies of the
A " 3 systems. Separate curves are shown for 3H and 3He
fits, as well as their average. There are two points where the
binding of 4He is reproduced exactly. We observe, how-
ever, that in the investigated range of cD # cE, the calcu-
lated 4He binding energy is within a few hundred keV of
experiment. Consequently, the determination of the LECs
in this way is likely not very stringent. We therefore
investigate the sensitivity of the p-shell nuclear properties
to the choice of the cD # cE LECs. First, we maintain the
A " 3 binding energy constraint. Second, we limit our-
selves to the cD values in the vicinity of the point cD $ 1
since the values close to the point cD $ 10 overestimate the
4He radius.

While most of the p-shell nuclear properties, e.g., exci-
tation spectra, are not very sensitive to variations of cD in
the range from #3 to !2 that we explored, we identified
several observables that do demonstrate strong dependence
on cD. In Fig. 2 we display the 6Li quadrupole moment that
changes sign depending on the choice of cD, the ratio of the
B%E2& transitions from the 10B ground state to the first and
the second 1!0 state, and the 12C B%M1& transition from
the ground state to the 1!1 state. The B%M1& transition
inset illustrates the importance of the NNN interaction in
reproducing the experimental value [13]. The 10B B%E2&
ratio, in particular, changes by several orders of magnitude
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FIG. 2 (color online). Dependence on the cD with the cE
constrained by the A " 3 binding energy fit for different basis
sizes for: 6Li quadrupole moment, 10B B%E2; 3!1 0 !
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figure, the convergence of the B%M1; 0!0 ! 1!1& is presented
for calculations with (using cD " #1) and without the NNN
interaction.
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due to the lack of an in-depth three-nucleon scattering
phase shift analysis. We therefore investigate sensitivity
of the A> 3 nuclei properties to the variation of the con-
strained LECs. Our approach differs in two aspects from
the first NCSM application of the chiral NN ! NNN in-
teractions in Ref. [12] which presents a detailed investiga-
tion of 7Li. First, we introduce a regulator depending on the
momentum transfer in the NNN terms which results in a
local chiral NNN interaction. Second, we do not use ex-
clusively the 4He binding energy as the second constraint
on the cD and cE LECs.

The NCSM casts the diagonalization of the infinite
dimensional many-body Hamiltonian matrix as a finite
matrix problem in a harmonic oscillator (HO) basis with
an equivalent ‘‘effective Hamiltonian’’ derived from the
original Hamiltonian. The finite matrix problem is defined
by Nmax, the maximum number of oscillator quanta shared
by all nucleons above the lowest configuration. We solve
for the effective Hamiltonian by approximating it as a 3-

body interaction [10,11] based on our chosen chiral NN !
NNN interaction. With this ‘‘cluster approximation,’’ con-
vergence is guaranteed with increasing Nmax.

It is important to note that our NCSM results through
A " 4 are fully converged in that they are independent of
the Nmax cutoff and the @! HO energy. For heavier sys-
tems, we characterize the approach to convergence by the
dependence of the results on Nmax and @!.

Figure 1 shows the trajectories of the two LECs cD # cE
that are determined from fitting the binding energies of the
A " 3 systems. Separate curves are shown for 3H and 3He
fits, as well as their average. There are two points where the
binding of 4He is reproduced exactly. We observe, how-
ever, that in the investigated range of cD # cE, the calcu-
lated 4He binding energy is within a few hundred keV of
experiment. Consequently, the determination of the LECs
in this way is likely not very stringent. We therefore
investigate the sensitivity of the p-shell nuclear properties
to the choice of the cD # cE LECs. First, we maintain the
A " 3 binding energy constraint. Second, we limit our-
selves to the cD values in the vicinity of the point cD $ 1
since the values close to the point cD $ 10 overestimate the
4He radius.

While most of the p-shell nuclear properties, e.g., exci-
tation spectra, are not very sensitive to variations of cD in
the range from #3 to !2 that we explored, we identified
several observables that do demonstrate strong dependence
on cD. In Fig. 2 we display the 6Li quadrupole moment that
changes sign depending on the choice of cD, the ratio of the
B%E2& transitions from the 10B ground state to the first and
the second 1!0 state, and the 12C B%M1& transition from
the ground state to the 1!1 state. The B%M1& transition
inset illustrates the importance of the NNN interaction in
reproducing the experimental value [13]. The 10B B%E2&
ratio, in particular, changes by several orders of magnitude

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Exp
8hΩ
6hΩ
4hΩ
2hΩ
0hΩ

0.1

1

10

-3 -2 -1 0 1 2
cD

0

1

2

3

0 2 4 6Nmax
0
1
2

3
4

12
C

Exp
NN+NNN
NN 

6
Li

Quadrupole moment [e fm
2
]

NN+NNN

gs→1
+

1  to  gs→1
+

2  B(E2) ratio

10
B

B(M1; 0
+
 0 → 1+

 1) [µN
2
]

FIG. 2 (color online). Dependence on the cD with the cE
constrained by the A " 3 binding energy fit for different basis
sizes for: 6Li quadrupole moment, 10B B%E2; 3!1 0 !
1!1 0&=B%E2; 3!1 0 ! 1!2 0& ratio, and the 12C B%M1; 0!0 !
1!1&. The HO frequency of @! " 13, 14, 15 MeV was em-
ployed for 6Li, 10B, 12C, respectively. In the inset of the 12C
figure, the convergence of the B%M1; 0!0 ! 1!1& is presented
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due to the lack of an in-depth three-nucleon scattering
phase shift analysis. We therefore investigate sensitivity
of the A> 3 nuclei properties to the variation of the con-
strained LECs. Our approach differs in two aspects from
the first NCSM application of the chiral NN ! NNN in-
teractions in Ref. [12] which presents a detailed investiga-
tion of 7Li. First, we introduce a regulator depending on the
momentum transfer in the NNN terms which results in a
local chiral NNN interaction. Second, we do not use ex-
clusively the 4He binding energy as the second constraint
on the cD and cE LECs.

The NCSM casts the diagonalization of the infinite
dimensional many-body Hamiltonian matrix as a finite
matrix problem in a harmonic oscillator (HO) basis with
an equivalent ‘‘effective Hamiltonian’’ derived from the
original Hamiltonian. The finite matrix problem is defined
by Nmax, the maximum number of oscillator quanta shared
by all nucleons above the lowest configuration. We solve
for the effective Hamiltonian by approximating it as a 3-

body interaction [10,11] based on our chosen chiral NN !
NNN interaction. With this ‘‘cluster approximation,’’ con-
vergence is guaranteed with increasing Nmax.

It is important to note that our NCSM results through
A " 4 are fully converged in that they are independent of
the Nmax cutoff and the @! HO energy. For heavier sys-
tems, we characterize the approach to convergence by the
dependence of the results on Nmax and @!.

Figure 1 shows the trajectories of the two LECs cD # cE
that are determined from fitting the binding energies of the
A " 3 systems. Separate curves are shown for 3H and 3He
fits, as well as their average. There are two points where the
binding of 4He is reproduced exactly. We observe, how-
ever, that in the investigated range of cD # cE, the calcu-
lated 4He binding energy is within a few hundred keV of
experiment. Consequently, the determination of the LECs
in this way is likely not very stringent. We therefore
investigate the sensitivity of the p-shell nuclear properties
to the choice of the cD # cE LECs. First, we maintain the
A " 3 binding energy constraint. Second, we limit our-
selves to the cD values in the vicinity of the point cD $ 1
since the values close to the point cD $ 10 overestimate the
4He radius.

While most of the p-shell nuclear properties, e.g., exci-
tation spectra, are not very sensitive to variations of cD in
the range from #3 to !2 that we explored, we identified
several observables that do demonstrate strong dependence
on cD. In Fig. 2 we display the 6Li quadrupole moment that
changes sign depending on the choice of cD, the ratio of the
B%E2& transitions from the 10B ground state to the first and
the second 1!0 state, and the 12C B%M1& transition from
the ground state to the 1!1 state. The B%M1& transition
inset illustrates the importance of the NNN interaction in
reproducing the experimental value [13]. The 10B B%E2&
ratio, in particular, changes by several orders of magnitude
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basis space size Nmax at @! " 15 MeV and comparison with
experiment. The isospin of the states depicted is T " 1=2.
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due to the lack of an in-depth three-nucleon scattering
phase shift analysis. We therefore investigate sensitivity
of the A> 3 nuclei properties to the variation of the con-
strained LECs. Our approach differs in two aspects from
the first NCSM application of the chiral NN ! NNN in-
teractions in Ref. [12] which presents a detailed investiga-
tion of 7Li. First, we introduce a regulator depending on the
momentum transfer in the NNN terms which results in a
local chiral NNN interaction. Second, we do not use ex-
clusively the 4He binding energy as the second constraint
on the cD and cE LECs.

The NCSM casts the diagonalization of the infinite
dimensional many-body Hamiltonian matrix as a finite
matrix problem in a harmonic oscillator (HO) basis with
an equivalent ‘‘effective Hamiltonian’’ derived from the
original Hamiltonian. The finite matrix problem is defined
by Nmax, the maximum number of oscillator quanta shared
by all nucleons above the lowest configuration. We solve
for the effective Hamiltonian by approximating it as a 3-

body interaction [10,11] based on our chosen chiral NN !
NNN interaction. With this ‘‘cluster approximation,’’ con-
vergence is guaranteed with increasing Nmax.

It is important to note that our NCSM results through
A " 4 are fully converged in that they are independent of
the Nmax cutoff and the @! HO energy. For heavier sys-
tems, we characterize the approach to convergence by the
dependence of the results on Nmax and @!.

Figure 1 shows the trajectories of the two LECs cD # cE
that are determined from fitting the binding energies of the
A " 3 systems. Separate curves are shown for 3H and 3He
fits, as well as their average. There are two points where the
binding of 4He is reproduced exactly. We observe, how-
ever, that in the investigated range of cD # cE, the calcu-
lated 4He binding energy is within a few hundred keV of
experiment. Consequently, the determination of the LECs
in this way is likely not very stringent. We therefore
investigate the sensitivity of the p-shell nuclear properties
to the choice of the cD # cE LECs. First, we maintain the
A " 3 binding energy constraint. Second, we limit our-
selves to the cD values in the vicinity of the point cD $ 1
since the values close to the point cD $ 10 overestimate the
4He radius.

While most of the p-shell nuclear properties, e.g., exci-
tation spectra, are not very sensitive to variations of cD in
the range from #3 to !2 that we explored, we identified
several observables that do demonstrate strong dependence
on cD. In Fig. 2 we display the 6Li quadrupole moment that
changes sign depending on the choice of cD, the ratio of the
B%E2& transitions from the 10B ground state to the first and
the second 1!0 state, and the 12C B%M1& transition from
the ground state to the 1!1 state. The B%M1& transition
inset illustrates the importance of the NNN interaction in
reproducing the experimental value [13]. The 10B B%E2&
ratio, in particular, changes by several orders of magnitude
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FIG. 2 (color online). Dependence on the cD with the cE
constrained by the A " 3 binding energy fit for different basis
sizes for: 6Li quadrupole moment, 10B B%E2; 3!1 0 !
1!1 0&=B%E2; 3!1 0 ! 1!2 0& ratio, and the 12C B%M1; 0!0 !
1!1&. The HO frequency of @! " 13, 14, 15 MeV was em-
ployed for 6Li, 10B, 12C, respectively. In the inset of the 12C
figure, the convergence of the B%M1; 0!0 ! 1!1& is presented
for calculations with (using cD " #1) and without the NNN
interaction.
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FIG. 3 (color online). 11B excitation spectra as function of the
basis space size Nmax at @! " 15 MeV and comparison with
experiment. The isospin of the states depicted is T " 1=2.
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due to the lack of an in-depth three-nucleon scattering
phase shift analysis. We therefore investigate sensitivity
of the A> 3 nuclei properties to the variation of the con-
strained LECs. Our approach differs in two aspects from
the first NCSM application of the chiral NN ! NNN in-
teractions in Ref. [12] which presents a detailed investiga-
tion of 7Li. First, we introduce a regulator depending on the
momentum transfer in the NNN terms which results in a
local chiral NNN interaction. Second, we do not use ex-
clusively the 4He binding energy as the second constraint
on the cD and cE LECs.

The NCSM casts the diagonalization of the infinite
dimensional many-body Hamiltonian matrix as a finite
matrix problem in a harmonic oscillator (HO) basis with
an equivalent ‘‘effective Hamiltonian’’ derived from the
original Hamiltonian. The finite matrix problem is defined
by Nmax, the maximum number of oscillator quanta shared
by all nucleons above the lowest configuration. We solve
for the effective Hamiltonian by approximating it as a 3-

body interaction [10,11] based on our chosen chiral NN !
NNN interaction. With this ‘‘cluster approximation,’’ con-
vergence is guaranteed with increasing Nmax.

It is important to note that our NCSM results through
A " 4 are fully converged in that they are independent of
the Nmax cutoff and the @! HO energy. For heavier sys-
tems, we characterize the approach to convergence by the
dependence of the results on Nmax and @!.

Figure 1 shows the trajectories of the two LECs cD # cE
that are determined from fitting the binding energies of the
A " 3 systems. Separate curves are shown for 3H and 3He
fits, as well as their average. There are two points where the
binding of 4He is reproduced exactly. We observe, how-
ever, that in the investigated range of cD # cE, the calcu-
lated 4He binding energy is within a few hundred keV of
experiment. Consequently, the determination of the LECs
in this way is likely not very stringent. We therefore
investigate the sensitivity of the p-shell nuclear properties
to the choice of the cD # cE LECs. First, we maintain the
A " 3 binding energy constraint. Second, we limit our-
selves to the cD values in the vicinity of the point cD $ 1
since the values close to the point cD $ 10 overestimate the
4He radius.

While most of the p-shell nuclear properties, e.g., exci-
tation spectra, are not very sensitive to variations of cD in
the range from #3 to !2 that we explored, we identified
several observables that do demonstrate strong dependence
on cD. In Fig. 2 we display the 6Li quadrupole moment that
changes sign depending on the choice of cD, the ratio of the
B%E2& transitions from the 10B ground state to the first and
the second 1!0 state, and the 12C B%M1& transition from
the ground state to the 1!1 state. The B%M1& transition
inset illustrates the importance of the NNN interaction in
reproducing the experimental value [13]. The 10B B%E2&
ratio, in particular, changes by several orders of magnitude
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FIG. 2 (color online). Dependence on the cD with the cE
constrained by the A " 3 binding energy fit for different basis
sizes for: 6Li quadrupole moment, 10B B%E2; 3!1 0 !
1!1 0&=B%E2; 3!1 0 ! 1!2 0& ratio, and the 12C B%M1; 0!0 !
1!1&. The HO frequency of @! " 13, 14, 15 MeV was em-
ployed for 6Li, 10B, 12C, respectively. In the inset of the 12C
figure, the convergence of the B%M1; 0!0 ! 1!1& is presented
for calculations with (using cD " #1) and without the NNN
interaction.

0

5

10

15

NN+NNN

 3/2-  3/2-
 1/2-

 1/2-

 5/2-

 5/2-
 3/2-

 3/2-

 7/2-

 7/2-

 5/2-

 5/2-

 5/2-

 5/2-

0

5

10

15

NN

  Exp Nmax= 6 Nmax= 4 Nmax= 2 Nmax= 0

 3/2-  3/2-
 1/2-

 1/2-

 5/2-

 5/2-

 3/2-

 3/2-

 7/2-

 7/2-

 5/2-

 5/2-

 5/2-

 5/2-

E
 [M

eV
]

E
 [M

eV
]

FIG. 3 (color online). 11B excitation spectra as function of the
basis space size Nmax at @! " 15 MeV and comparison with
experiment. The isospin of the states depicted is T " 1=2.
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Choose cD =-1 and obtain spectra and their sensitivity on the 3NF ....

               - Clear improvement of description compared to experiment. 
               - Some corrections are too strong
               - Binding energies are OK (within our accuracy)
      

10B & 13C spectra

depending on the cD variation. This is due to the fact that
the structure of the two 1!0 states is exchanged depending
on cD. From Figs. 1 and 2, we can see that for cD <"2 the
4He radius and the 6Li quadrupole moment underestimate
experiment while for cD > 0 the lowest two 1! states of
10B are reversed and the 12C B#M1; 0!0 ! 1!1$ is over-
estimated. We therefore select cD % "1 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as a
function of Nmax for both the chiral NN ! NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our other
p-shell nuclei.

We display in Fig. 4 the natural parity excitation spectra
of four nuclei in the middle of the p shell with both the NN
and the NN ! NNN effective interactions from ChPT. The
results shown are obtained in the largest basis spaces
achieved to date for these nuclei with the NNN interac-
tions, Nmax % 6 (6@!). Overall, the NNN interaction con-
tributes significantly to improve theory in comparison with
experiment. This is especially well demonstrated in the odd
mass nuclei for the lowest few excited states. The cele-
brated case of the ground-state spin of 10B and its sensi-
tivity to the presence of the NNN interaction is clearly
evident. There is an initial indication in these spectra that
the chiral NNN interaction is ‘‘overcorrecting’’ the inad-
equacies of the NN interaction since, e.g., the 1!0 and 4!0
states in 12C are not only interchanged but they are also
spread apart more than the experimentally observed
separation.

Table I contains selected experimental and theoretical
results, including Gamow-Teller (GT) transitions, for 6Li
and A % 10–13. A total of 68 experimental data are sum-
marized in this Table including the excitation energies of
28 states encapsulated in the rms energy deviations. Note
that the only case of an increase in the rms energy deviation
with inclusion of NNN interaction is 13C and it arises due
to the upward shift of the 7
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" state seen in Fig. 4, an
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FIG. 4 (color online). States dominated by p-shell configura-
tions for 10B, 11B, 12C, and 13C calculated at Nmax % 6 using
@! % 15 MeV (14 MeV for 10B). Most of the eigenstates are
isospin T % 0 or 1=2, the isospin label is explicitly shown only
for states with T % 1 or 3=2. The excitation energy scales are in
MeV.

TABLE I. Selected properties of 6Li, 10;11B, and 12;13C from
experiment and theory. E2 transitions are in e2 fm4 and M1
transitions are in !2

N . The rms deviations of excited state
energies are quoted for the states shown in Fig. 4 whose spin-
parity assignments are well established and that are known to be
dominated by p-shell configurations. The total energy rms is for
the 28 excited states from Fig. 4. Results were obtained in the
basis spaces with Nmax % 6 (8 for 6Li) and HO frequency @! %
15 MeV (13 MeV for 6Li, 14 MeV for 10B). In the NN ! NNN
column, we show sensitivity of selected observables to the
change of cD by &1 at fixed Nmax and @!. The experimental
values are from Refs. [14–21].

Nucleus/property Expt. NN ! NNN NN
6Li: jE#1!1 0$j [MeV] 31.995 32.63 28.98
Q#1!1 0$ [e fm2] "0:082#2$ "0:12#4$ "0:052
!#1!1 0$ [!N] !0:822 !0:836 !0:845
Ex#3!1 0$ [MeV] 2.186 2.47(8) 2.874
B#E2; 3!1 0 ! 1!1 0$ 10.69(84) 3.685 4.512
B#E2; 2!1 0 ! 1!1 0$ 4.40(2.27) 3.847 4.624
B#M1; 0!1 1 ! 1!1 0$ 15.43(32) 15.04(4) 15.089
B#M1; 2!1 1 ! 1!1 0$ 0.149(27) 0.08(2) 0.031

10B: jE#3!1 0$j [MeV] 64.751 64.78 56.11
rp [fm] 2.30(12) 2.197 2.256
Q#3!1 0$ [e fm2] !8:472#56$ !6:327 !6:803
!#3!1 0$ [!N] !1:801 !1:837 !1:853
rms (Exp-Th) [MeV] - 0.823 1.482
B#E2; 1!1 0 ! 3!1 0$ 4.13(6) 3.05(62) 4.380
B#E2; 1!2 0 ! 3!1 0$ 1.71(0.26) 0.50(50) 0.082
B#GT; 3!1 0 ! 2!1 1$ 0.083(3) 0.07(1) 0.102
B#GT; 3!1 0 ! 2!2 1$ 0.95(13) 1.22(2) 1.487

11B: jE# 321
" 1

2$j [MeV] 76.205 77.52 67.29
rp# 321

" 1
2$ [fm] 2.24(12) 2.127 2.196

Q# 321
" 1

2$ [e fm2] !4:065#26$ !3:065 !2:989

!# 321
" 1

2$ [!N] !2:689 !2:06#1$ !2:597
rms (Exp-Th) [MeV] - 1.067 1.765
B#E2; 3

21
" 1

2 ! 1
21
" 1

2$ 2.6(4) 1.476 0.750

B#GT; 3
21
" 1

2 ! 3
21
" 1

2$ 0.345(8) 0.24(1) 0.663

B#GT; 3
21
" 1

2 ! 1
21
" 1

2$ 0.440(22) 0.46(2) 0.841

B#GT; 3
21
" 1

2 ! 5
21
" 1

2$ 0.526(27) 0.53(3) 0.394

B#GT; 3
21
" 1

2 ! 3
22
" 1

2$ 0.525(27) 0.76(2) 0.574

12C: jE#0!1 0$j [MeV] 92.162 95.57 84.76
rp [fm] 2.35(2) 2.172 2.229
Q#2!1 0$ [e fm2] !6#3$ !4:318 !4:931
rms (Exp-Th) [MeV] - 1.058 1.318
B#E2; 2!0 ! 0!0$ 7.59(42) 4.252 5.483
B#M1; 1!0 ! 0!0$ 0.0145(21) 0.006 0.003
B#M1; 1!1 ! 0!0$ 0.951(20) 0.91(6) 0.353
B#E2; 2!1 ! 0!0$ 0.65(13) 0.45(1) 0.301

13C: jE# 121
" 1

2$j [MeV] 97.108 103.23 90.31

rp# 121
" 1

2$ [fm] 2.29(3) 2.135 2.195

!# 121
" 1

2$ [!N] !0:702 !0:39#3$ !0:862
rms (Exp-Th) [MeV] - 2.144 2.089
B#E2; 3

21
" 1

2 ! 1
21
" 1

2$ 6.4(15) 2.659 4.584
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depending on the cD variation. This is due to the fact that
the structure of the two 1!0 states is exchanged depending
on cD. From Figs. 1 and 2, we can see that for cD <"2 the
4He radius and the 6Li quadrupole moment underestimate
experiment while for cD > 0 the lowest two 1! states of
10B are reversed and the 12C B#M1; 0!0 ! 1!1$ is over-
estimated. We therefore select cD % "1 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as a
function of Nmax for both the chiral NN ! NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our other
p-shell nuclei.

We display in Fig. 4 the natural parity excitation spectra
of four nuclei in the middle of the p shell with both the NN
and the NN ! NNN effective interactions from ChPT. The
results shown are obtained in the largest basis spaces
achieved to date for these nuclei with the NNN interac-
tions, Nmax % 6 (6@!). Overall, the NNN interaction con-
tributes significantly to improve theory in comparison with
experiment. This is especially well demonstrated in the odd
mass nuclei for the lowest few excited states. The cele-
brated case of the ground-state spin of 10B and its sensi-
tivity to the presence of the NNN interaction is clearly
evident. There is an initial indication in these spectra that
the chiral NNN interaction is ‘‘overcorrecting’’ the inad-
equacies of the NN interaction since, e.g., the 1!0 and 4!0
states in 12C are not only interchanged but they are also
spread apart more than the experimentally observed
separation.

Table I contains selected experimental and theoretical
results, including Gamow-Teller (GT) transitions, for 6Li
and A % 10–13. A total of 68 experimental data are sum-
marized in this Table including the excitation energies of
28 states encapsulated in the rms energy deviations. Note
that the only case of an increase in the rms energy deviation
with inclusion of NNN interaction is 13C and it arises due
to the upward shift of the 7

2
" state seen in Fig. 4, an
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FIG. 4 (color online). States dominated by p-shell configura-
tions for 10B, 11B, 12C, and 13C calculated at Nmax % 6 using
@! % 15 MeV (14 MeV for 10B). Most of the eigenstates are
isospin T % 0 or 1=2, the isospin label is explicitly shown only
for states with T % 1 or 3=2. The excitation energy scales are in
MeV.

TABLE I. Selected properties of 6Li, 10;11B, and 12;13C from
experiment and theory. E2 transitions are in e2 fm4 and M1
transitions are in !2

N . The rms deviations of excited state
energies are quoted for the states shown in Fig. 4 whose spin-
parity assignments are well established and that are known to be
dominated by p-shell configurations. The total energy rms is for
the 28 excited states from Fig. 4. Results were obtained in the
basis spaces with Nmax % 6 (8 for 6Li) and HO frequency @! %
15 MeV (13 MeV for 6Li, 14 MeV for 10B). In the NN ! NNN
column, we show sensitivity of selected observables to the
change of cD by &1 at fixed Nmax and @!. The experimental
values are from Refs. [14–21].

Nucleus/property Expt. NN ! NNN NN
6Li: jE#1!1 0$j [MeV] 31.995 32.63 28.98
Q#1!1 0$ [e fm2] "0:082#2$ "0:12#4$ "0:052
!#1!1 0$ [!N] !0:822 !0:836 !0:845
Ex#3!1 0$ [MeV] 2.186 2.47(8) 2.874
B#E2; 3!1 0 ! 1!1 0$ 10.69(84) 3.685 4.512
B#E2; 2!1 0 ! 1!1 0$ 4.40(2.27) 3.847 4.624
B#M1; 0!1 1 ! 1!1 0$ 15.43(32) 15.04(4) 15.089
B#M1; 2!1 1 ! 1!1 0$ 0.149(27) 0.08(2) 0.031

10B: jE#3!1 0$j [MeV] 64.751 64.78 56.11
rp [fm] 2.30(12) 2.197 2.256
Q#3!1 0$ [e fm2] !8:472#56$ !6:327 !6:803
!#3!1 0$ [!N] !1:801 !1:837 !1:853
rms (Exp-Th) [MeV] - 0.823 1.482
B#E2; 1!1 0 ! 3!1 0$ 4.13(6) 3.05(62) 4.380
B#E2; 1!2 0 ! 3!1 0$ 1.71(0.26) 0.50(50) 0.082
B#GT; 3!1 0 ! 2!1 1$ 0.083(3) 0.07(1) 0.102
B#GT; 3!1 0 ! 2!2 1$ 0.95(13) 1.22(2) 1.487
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12C: jE#0!1 0$j [MeV] 92.162 95.57 84.76
rp [fm] 2.35(2) 2.172 2.229
Q#2!1 0$ [e fm2] !6#3$ !4:318 !4:931
rms (Exp-Th) [MeV] - 1.058 1.318
B#E2; 2!0 ! 0!0$ 7.59(42) 4.252 5.483
B#M1; 1!0 ! 0!0$ 0.0145(21) 0.006 0.003
B#M1; 1!1 ! 0!0$ 0.951(20) 0.91(6) 0.353
B#E2; 2!1 ! 0!0$ 0.65(13) 0.45(1) 0.301

13C: jE# 121
" 1

2$j [MeV] 97.108 103.23 90.31

rp# 121
" 1

2$ [fm] 2.29(3) 2.135 2.195

!# 121
" 1

2$ [!N] !0:702 !0:39#3$ !0:862
rms (Exp-Th) [MeV] - 2.144 2.089
B#E2; 3

21
" 1

2 ! 1
21
" 1

2$ 6.4(15) 2.659 4.584

PRL 99, 042501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
27 JULY 2007

042501-3

(Navrátil et al., PRL (2007))
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Nuclear structure with soft-interactions
E.g. UCOM-approach (Roth, Feldmeier, Neff, Hergert, ...)

Calculations for complex nuclei can 
been performed  based on soft interactions
(although softer than typical chiral forces) ! 

Are soft interactions physically sensible?
3NF contribution? 
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Figure 1. Results of no-core shell model calculations using the correlated AV18 potential. Left
panel: convergence of the ground state energy of 4He for bare (upper plot) and correlated AV18
potential (lower plot). Right panel: Tjon-line and dependence of the energy on the correlator
range as described in the text (taken from [8]).

number Nmax. The upper panel corresponds to a calculation with the bare AV18 potential.
Evidently, even for the largest feasible model spaces, the energy is not yet converged. The
reason is that a full description of short-range central and tensor correlations requires even larger
model spaces, which are computationally not tractable. The picture changes if we use VUCOM,
i.e., include the unitary transformation of the Hamiltonian. The convergence is dramatically
improved since the short-range central and tensor correlations are now treated explicitly by the
unitary correlation operator. Note that a bound nucleus is already obtained with a single Slater
determinant (i.e. Nmax = 0). With increasing size of the model space, the ground state energy is
lowered further. This is the result of the improved description of long-range correlations—not
accounted for by the unitary transformation—by the model space.

A second interesting aspect is illustrated on the right-hand side of Fig. 1, where the converged
ground state energies of 3H and 4He are plotted. Each data point corresponds to a different
interaction. The exact energies for the different bare NN-interactions, like the AV18, the CD
Bonn and the Nijmegen interactions (circles), fall onto the so-called Tjon-line [10] but are far

R. Roth et al. / Nuclear Physics A 788 (2007) 12c–19c 15c

Roth et al., NPA (2007)
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inherent limitations. It is well known that the convergence of
successive orders of perturbation theory is not guaranteed. As
soon as there are near degeneracies in the single-particle spec-
trum, convergence problems are inevitable [42]. Nevertheless,
low-order MBPT provides a quantitative measure for residual
contributions beyond HF due to long-range correlations. Of
course, a description of the dominant short-range correlations
by means of perturbation theory is not possible—it is crucial
that those are treated explicitly by the unitary transformation
first.

We will restrict ourselves mainly to second-order calcula-
tions and use the third-order contributions only to estimate
higher-order effects. The second-order contribution involves
antisymmetrized two-body matrix elements of the correlated
intrinsic Hamiltonian H̃int = Tint + VUCOM between two states
below the Fermi energy (hole states denoted α,α′, . . .) and
two states above the Fermi energy (particle states denoted
β,β ′, . . .):

E(2) = 1
4

<εF∑

α,α′

>εF∑

β,β ′

|〈αα′| H̃int |ββ ′〉|2

(εα + εα′ − εβ − εβ ′)
. (34)

Note that the full two-body part of the many-body Hamiltonian
enters, which includes the intrinsic kinetic energy in our case.

The third-order contribution can be conveniently decom-
posed into three parts [41]: one involving two additional
particle states,

E(3)
pp = 1

8

<εF∑

α,α′

>εF∑

ββ ′β ′′β ′′′

× 〈αα′| H̃int |ββ ′〉〈ββ ′| H̃int |β ′′β ′′′〉〈β ′′β ′′′| H̃int |αα′〉
(εα + εα′ − εβ − εβ ′ )(εα + εα′ − εβ ′′ − εβ ′′′ )

,

(35)

one with two additional hole states,

E
(3)
hh = 1

8

<εF∑

αα′α′′α′′′

>εF∑

ββ ′

× 〈αα′| H̃int |ββ ′〉〈ββ ′| H̃int |α′′α′′′〉〈α′′α′′′| H̃int |αα′〉
(εα + εα′ − εβ − εβ ′)(εα′′ + εα′′′ − εβ − εβ ′ )

,

(36)

and a third part with one additional particle and one additional
hole state:

E
(3)
ph =

<εF∑

αα′α′′

>εF∑

ββ ′β ′′

× 〈αα′| H̃int |ββ ′〉〈α′′β| H̃int |αβ ′′〉〈β ′β ′′| H̃int |α′′α′〉
(εα + εα′ − εβ − εβ ′)(εα′ + εα′′ − εβ ′ − εβ ′′ )

.

(37)

The numerical evaluation of the third-order contributions is
extremely time consuming. Moreover, it does not necessarily
improve the results, nor does it prove convergence [42].

Perturbation theory can also be used to construct the
perturbed many-body states, which in turn give access to the
other observables. We will not go into detail (see Ref. [43])
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FIG. 5. (Color online) Ground-state energies for selected closed-
shell nuclei in HF approximation and with added second- and
third-order MBPT corrections. The correlated AV18 potential with
Iϑ = 0.09 fm3 was used. The bars indicate the experimental binding
energies [31].

but rather present a few results on the effect of second-
order perturbative corrections on occupation propabilities and
charge radii in Sec. II C.

B. Ground-state energies

For all following calculations we again use the correlated
AV18 potential for the triplet-even tensor correlator with the
optimal range Iϑ = 0.09 fm3, as determined from no-core
shell-model calculations (cf. Sec. II E).

Figure 5 compares the ground-state energies in HF ap-
proximation and second order perturbation theory for selected
closed-shell nuclei. All calculations were performed using
emax = 12 major oscillator shells in order to ensure a satisfac-
tory degree of convergence of the perturbative contributions.
The residual change in binding energy when going from
emax = 12 to emax = 13 is on the level of 3% for 40Ca and 90Zr.
For light nuclei the third-order perturbative contributions are
also shown. However, owing to the high computational cost, a
reduced basis set with emax = 8 was used.

The inclusion of the perturbative contributions to the energy
leads to a remarkable result. Throughout the whole mass range,
we obtain a good agreement with the experimental binding
energies. The binding energy missing in the HF treatment
is completely recovered by the second-order perturbative
contribution E(2). In all cases we considered, the third-order
contribution E(3) is very small, but tends to improve the
agreement with the experimental energies further.

This observation is also confirmed for open-shell nuclei. We
extend the HF and MBPT schemes by allowing for partially
filled nlj shells under the constraint of identical single-particle
states for each m sublevel (cf. Sec. III). This, of course,
does not account for effects like pairing and deformation,
which will be discussed elsewhere. Nevertheless, it allows
us to systematically investigate the isospin dependence of
the correlated interaction. Figure 6 shows the HF and the
HF+MBPT energies for the O, Ca, Ni, and Sn isotope chains.
Again, the agreement of EHF + E(2) with the experimental
ground-state energies is remarkable, even for extreme neu-
tron numbers. This shows that the isospin-character of the
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FIG. 8. (Color online) Charge radii for selected closed-shell
nuclei in the HF approximation and with added second-order MBPT
corrections. The correlated AV18 potential with Iϑ = 0.09 fm3 was
used. The bars indicate experimental charge radii [32].

energy the population of the particle states deceases rapidly
and becomes rather small for the largest energies contained in
the single-particle space.

One should keep in mind that these results reflect only the
effect of the long-range correlations treated by perturbation
theory. The dominant short-range correlations, which are
described by the unitary correlators, do not show up in these
occupation numbers. In order to reveal their impact as well,
one has to formulate a correlated occupation number operator,
e.g., with respect to momentum eigenstates.

By contracting the one-body density matrix with the wave
functions of the HF single-particle states we determine the per-
turbed proton and neutron density distributions. Charge dis-
tributions and charge radii are obtained by including the
proton and neutron form factors as well as a center-of-mass
correction. The perturbed charge radii of closed-shell nuclei
are summarized in Fig. 8. The perturbative corrections increase
the charge radii typically by 0.1−0.2 fm. The increase is the
result of individual contributions of different signs, which
could also cause a decrease of the radius [43]. This result
is consistent with the general expectation that the admixture
of higher-lying states increases the radii. However, the ob-
served increase is not sufficient to obtain agreement with the
available experimental data for heavier nuclei. With growing
mass number, the deviation from the experimental radii
increases.

Assuming the validity of the perturbative estimate, this
implies that the deviation of the HF charge radii from the
experimental ones cannot be fully explained by long-range
correlations. Hence, it can be interpreted as an indication
for the necessity of a net effective three-body force, i.e., a
combination of the genuine three-body force and the three-
body contributions of the cluster expansion.

V. CONCLUSIONS

We have employed the unitary correlation operator method
for describing the dominant short-range correlations induced
by realistic NN potentials in a simple Hartree-Fock frame-
work. Based on the Argonne V18 potential with optimal

correlation functions determined in the two-body system and
a range constraint for the tensor correlation functions fixed
in three- and four-body systems, we have performed HF and
MBPT calculations for spherical nuclei throughout the nuclear
chart.

We obtain bound nuclei using the correlated AV18 potential
already at the HF level. This proves that the dominant
short-range central and tensor correlations are successfully
described by the unitary correlation operators. Without the
proper inclusion of both types of correlation it is not possible
to obtain self-bound solutions in a HF framework by using
the AV18 potential. However, the HF binding energies remain
significantly smaller than the experimental binding energies.
The same holds true for charge radii. On the other hand, the
single-particle energy differences between spin-orbit partner
states show a satisfactory agreement with experimental esti-
mates.

The missing binding energy is connected to residual long-
range correlations, which are not described by the unitary
correlation operators. They have to be covered by the model
space, and the Slater determinant of the HF approximation
is clearly not able to do so. Many-body perturbation theory
as the simplest possible step beyond the HF ground state
already recovers the missing binding energy. The agreement
between second-order ground-state energies and experimental
data is remarkably good throughout the whole mass range
from 4He to 208Pb, even far off the valley of stability.
Unlike the short-range central and tensor correlations, the
residual long-range correlations are perturbative. This opens
interesting perspectives for the application of more refined
many-body techniques, like configuration interaction and
coupled-cluster schemes, to benchmark the perturbative results
and obtain a more detailed insight into the structure of those
correlations.

None of the calculations presented here does include three-
body forces. Therefore, it is surprising that a good agreement
with the experimental binding energies was observed for all
nuclei considered. This is due to a net cancellation of the energy
contributions of the genuine three-body force (attractive) and
the three-body order of the cluster expansion (repulsive).
This was already observed in no-core shell-model calculations
for light systems [13], but seems to hold across the whole
nuclear chart. Obviously, this cancellation effect does not
necessarily work for other observables as well. The charge
radii, which still show a sizable deviation from experiment
after including long-range correlations, point in that direction.
The construction and inclusion of effective three-body forces
will therefore be one of the major lines of research for
the future.
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Long range part is given by the one-pion exchange          
2π-exchange is usually not included, instead there is the repulsive core !

Repulsive core induces high momentum components in the Fourier-transformed potential
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Low momentum nuclear interactions (Vlowk)

Systematical reduction of high momentum components (removal of hard core)

• Models have been adjusted only to low energy data (below 350 MeV lab energy)

• wave functions at high momenta ( > 300 MeV/c)  are strongly model dependent 

• high momentum components are difficult to handle in many-nucleon systems  

Idea of vlowk:

       RG equation to decouple low and high momentum components   
 
       Description of data at low momenta is exactly preserved

22
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RG for NN forces

Lippmann-Schwinger equation for finite cutoff  Λ 

Start with large  Λ and decrease infinitesimally keeping “half-off-shell” K-matrix invariant

              Differential equation for potential depending on Λ

Hermitization required, but possible 

                        low momentum interaction (vlowk) for a specific starting interaction

NN data up to  p=Λ  are described exactly 

K(p, p′) = VΛ(p, p′) + −

∫ Λ

0

dp′′ p′′
2 mVΛ(p, p′′) K(p′′, p′)

p′2 − p′′2

d

dΛ
VΛ(p, p′) ≡ β(VΛ,Λ) = −

mΛ2

p′2 − Λ2
VΛ(p, Λ)K(Λ, p′)

(Bogner, Kuo, Schwenk, 2003)
23



February 09, 2009 Page

Vlowk is model independent
one observes for small cutoffs ( < 400 MeV ):
     Vlowk is independent of starting model! 

      agrees with Vlowk of chiral NN interaction                connection to chiral interactions

24

Collapse in all partial waves

due to same long-distance (!) physics and phase shift equivalence

small differences

related to spread

in phase shift fit

(Idaho misses 3F2)

Starting from any NN interaction:

Solutions to the RG eqn. evolve

to a “universal” interaction Vlow k

for cutoffs below

Vlow k

Bogner, Kuo, AS, Phys. Rep. 386 (2003) 1.

1S0

How cockroaches and dinosaurs run with cutoff…

Bogner et al., 2003 
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Vlowk for A=3
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Λ dependence of 3H binding energy is of the same order of magitude as 3NF contributions!

                 no indication that there are unnaturally large induced 3N interactions 

this is even true for Λ <  300 MeV/c !

AN, Bogner, Schwenk (2004)

Also 4He binding energies support this conclusion

25
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Vlowk and chiral potentials
How to define a consistent 3NF? 

Make use of model independence of vlowk:

For small cutoffs, vlowk is very similar for all models and the chiral interactions

                        chiral 3NF should be consistent to vlowk  (at least for small enough Λ) 

              Vlowk(Λ) +  chiral 3NF (adjusted to 3N and 4N observables) 

Adjustment procedure is the same as for purely chiral interactions
 
Combination can be applied to more complex systems

•Λ dependence?                     Tool to get idea of possible uncertainties
•3NF contribution?                  Size at higher densities?

26
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What is gained?
Perturbativity of NN interaction:
Many-body perturbation theory works for low momentum interactions (like for UCOM) !

27
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Application to nuclear matter
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non-complete study up to second order in perturbation theory 

•Λ independence up to saturation density 
•convergence of Goldstone-expansion
•3NF contribution is important for saturation  
•natural size of 3NF contribution 

S.K. Bogner et al. / Nuclear Physics A 763 (2005) 59–79 73

Table 2

Expectation values of the kinetic energy (T ), Vlowk and the different V3N contributions in MeV. The expectation values

are obtained with the Feynman–Hellman method, and Λ and kF are given in fm
−1

Hartree–Fock Hartree–Fock + dominant second order

kF Λ T Vlowk Vc VD VE T Vlowk Vc VD VE

1.0 1.6 12.44 −19.62 1.65 0.42 −0.22 15.50 −26.58 1.49 0.34 −0.29
1.9 12.44 −18.18 1.67 −0.25 0.40 16.29 −26.81 0.85 −0.09 0.55

2.1 12.44 −17.35 1.67 −0.42 0.62 16.92 −27.04 0.11 0.05 0.79

2.3 12.44 −16.56 1.67 −0.56 0.81 17.60 −27.27 −0.89 0.43 0.85

1.2 1.6 17.92 −31.47 5.37 1.31 −0.64 20.86 −37.66 4.59 1.03 −0.65
1.9 17.92 −28.95 5.61 −0.81 1.18 21.80 −37.38 3.99 −0.50 1.28

2.1 17.92 −27.51 5.67 −1.37 1.84 22.87 −37.53 2.27 −0.37 1.82

2.3 17.92 −26.13 5.70 −1.86 2.42 24.32 −37.95 −0.38 0.51 1.78

1.35 1.6 22.67 −42.47 10.75 2.59 −1.21 26.09 −47.85 8.73 1.96 −1.12
1.9 22.67 −38.82 11.95 −1.69 2.34 26.75 −46.72 9.14 −1.16 2.24

2.1 22.67 −36.74 12.19 −2.91 3.68 28.05 −46.47 6.99 −1.33 3.22

2.3 22.67 −34.77 12.30 −3.97 4.89 30.06 −46.45 3.10 −0.35 3.26

effects of the P dependence by replacingΛwith an effective (slightly smaller) cutoff, determined

by matching to the single-exchange Hartree–Fock contributions of V3N.

We then calculate the second-order contributionsE(2) from Vlow k plus density-dependent V̄3N,

E(2)

V
= −1

4

4∏

i=1

(
Trσi ,τi

∫
dki

(2π)3

)
nk1nk2(1− nk3)(1− nk4)

× |〈12|(Vlow k + V̄3N)(1− P12)|34〉|2
εk3 + εk4 − εk1 − εk2

(2π)3δ(3)(k1 + k2 − k3 − k4). (30)

For the intermediate-state integrations, the phase-space is angle-averaged and we use a con-

tinuous spectrum for εk = k2/(2m∗). The angle-averaging approximation is expected to be
reliable [34]. Here the effective mass is determined from the first-order self-energy correction

from Vlow k + V̄3N at the Fermi surface,

m∗

m
=

(
1− k

m

∂((k)

∂k

∣∣∣∣
k=kF

)−1
, (31)

where the spin–isospin independent part of the self-energy ((k) is given by

((k) = 1

4
Trσ1,τ1 Trσ2,τ2

∫
dk2

(2π)3
nk2〈12|(Vlow k + V̄3N)(1− P12)|12〉. (32)

In this approximation, we find for the effective mass m∗/m = 0.72, 0.67 and 0.65 for Λ =
1.9 fm−1 at kF = 1.0 fm−1, 1.2 fm−1 and 1.35 fm−1, respectively.
Our nuclear matter results including these dominant second-order contributions are shown

in the right panel of Fig. 6 and are promising in a number of aspects. First, we observe that

the second-order corrections move the saturation curves towards the empirical value. With the

additional attraction, we find a minimum of E/A ≈ −(11–12) MeV for Fermi momenta kF ≈
(1.2–1.35) fm−1 over the cutoff range considered. Third-order particle–particle and hole-hole
contributions are found to be small (! 1 MeV). Second, the cutoff dependence is dramatically

reduced when second-order contributions are included. We note that the determination of the ci
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(1.2–1.35) fm−1 over the cutoff range considered. Third-order particle–particle and hole-hole
contributions are found to be small (! 1 MeV). Second, the cutoff dependence is dramatically

reduced when second-order contributions are included. We note that the determination of the ci
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Conclusions
• Chiral perturbation theory leads to consistent NN & 3N forces

3N forces are an important part of nuclear forces

• Results for A=3 and A=4 indicate that chiral nuclear forces of high order (N3LO) give 
predictions for nuclear binding energies that are cutoff independent and therefore 
useful

• Predictions for p-shell nuclei  lead to realistic binding energies and spectra
3N forces have impact on the results

• Low momentum interactions are related to chiral forces

• 3NF‘s can be consistently added

• many body calculations are possible

• e.g. reasonable description of nuclear matter

• Λ dependence is a tool to identify missing contributions 
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Questions & Outlook

Can we improve the convergence of the chiral expansion in the NN sector ?

• importance of counter terms & cutoff dependence 

• inclusion of Δ’s in EFT 

•  independent constraint of the ππNN coupling constants

Chiral & vlowk few-body calculations to 

• understand sensitivity of observables on ci

• independent determinations of cD/cE to confirm consistency

• more quantitative relation of chiral forces and vlowk/UCOM

• external probes using ChPT
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