Structure of neutron-rich carbon and oxygen isotopes in a restricted no-core shell-model space

# Shinichiro Fujii (Kyushu Univ.)



First EMMI-EFES Workshop on Neutron-Rich Exotic Nuclei EENEN09 February 9-11, 2009, GSI Darmstadt



If we employ the bare NN force directly, extremely largescale calculations are needed.  $(300\hbar\Omega$  space with h.o. basis states for the deuteron!)

To perform a realistic calculation in a smaller model space, we need to derive an effective interaction microscopically.

> Similarity / Unitary transformation

### **Derivation of effective interaction (Hamiltonian) by means of unitary transformation**

### Hamiltonian

 $H = H_0 + V$ 

#### **Unitary transformation of** *H*

$$\widetilde{H} = U^{-1}HU$$
  
 $U = e^{S}$ , (S : anti-Hermitian,  $S^{\dagger} = -S$ )

#### **Decoupling equation**

 $Q(e^{-S}He^{S})P = 0$ 

#### **Solution**

 $S = \operatorname{arctanh}(\omega - \omega^{\dagger}), \ \omega = Q\omega P$ (with the restrictive condition PSP = QSQ = 0) K. Suzuki, Prog. Theor. Phys. **68** (1982), 246

| Effective Hamiltonian           | <b>Effective interaction</b>            |  |  |
|---------------------------------|-----------------------------------------|--|--|
| $H_{\rm eff} = P\widetilde{H}P$ | $V_{\rm eff} = P\widetilde{H}P - PH_0P$ |  |  |

### Unitary transformation operator U in terms of $\omega$

$$U = (1 + \omega - \omega^{\dagger})(1 + \omega^{\dagger}\omega + \omega\omega^{\dagger})^{-1/2}$$
$$= \begin{pmatrix} P(1 + \omega^{\dagger}\omega)^{-1/2}P & -P\omega^{\dagger}(1 + \omega\omega^{\dagger})^{-1/2}Q \\ Q\omega(1 + \omega^{\dagger}\omega)^{-1/2}P & Q(1 + \omega\omega^{\dagger})^{-1/2}Q \end{pmatrix}$$
S. Ōkubo, Prog. Theor. Phys. **12** (1954), 603

## **Our ongoing study**

Unitary-model-operator approach (UMOA)
 Closed-shell nuclei, single-particle (-hole) states in nuclei up to the *pf*-shell region

• A hypernuclei

S. Fujii, R. Okamoto, and K. Suzuki, Phys. Rev. C 69, 034328 (2004)

No-core" shell model (in a restricted model space) Hybrid method combining a no-core type of shell model with single-particle information obtained by the UMOA

Neutron-rich carbon isotopes, oxygen isotopes

S. Fujii, T. Mizusaki, T. Otsuka, T. Sebe, and A. Arima, Phys. Lett. B650, 9 (2007)

## **Derivation of effective interaction**



### Ground-state energies of <sup>16</sup>O



# Comparison of Expt. and UMOA results from modern NN interactions





## New approach to neutron-rich C isotopes

## • Large-scale shell model

- Code: newly developed version of MSHELL
- Model space: the 0s 1p0f shells
- Nucleon excitation: up to 2 nucleons from the occupied shells for <sup>14</sup>C

up to 2 nucleons to the 1p0f shells

Bare transition operator

## • Microscopic effective interaction

Derived from a high-precision NN interaction (CD Bonn, …) and the Coulomb force in the neutron-proton formalism for the given model space through a unitary-transformation theory





In the present shell model without any adjustable parameters

→ wrong ordering for the 1/2<sup>+</sup> and 5/2<sup>+</sup> states in <sup>15</sup>C due to the *small* modelspace size

To remedy the wrong ordering and reproduce the binding energies for the  $1/2^+$  and  $5/2^+$  states of the UMOA results

→ introduce a minimal refinement of the one-body energies for the  $0d_{5/2}$ and  $1s_{1/2}$  orbits of the neutron

The calculated results are denoted by "dressed"





H. J. Ong et al., Phys. Rev. C78, 014308 (2008)



H. J. Ong *et al.*, Phys. Rev. C78, 014308 (2008)

# The $\hbar\Omega$ dependence of calculated ground-state energies of <sup>18</sup>O



## Energy levels in <sup>18</sup>O



Excitation energies and probabilities of the 4p2h configuration for the lowest 4p2h dominant 0<sup>+</sup> state in <sup>18</sup>O

| <b>Configuration</b> ( <i>spsd</i> ) | 4p2h  | 6p4h  | 8p6h  |
|--------------------------------------|-------|-------|-------|
| Ex (MeV)                             | 41.75 | 31.50 | 30.29 |
| $P_{4p2h}$                           | 0.996 | 0.855 | 0.816 |

# Summary

- We have developed two methods for the microscopic description of nuclei beyond *p* shell with a realistic NN force in free space.
  - Unitary-model-operator approach (UMOA)
  - "No-core" shell model in a restricted model space
- In both methods, the microscopic effective interaction derived through a unitary transformation is the key ingredient.
- The "no-core" shell model has been applied to neutron-rich carbon isotopes and <sup>18</sup>O.
- The structures of low-lying states are well described, except for the experimental 0<sup>+</sup><sub>2</sub> and 2<sup>+</sup><sub>3</sub> states in <sup>18</sup>O.
- For those intruder states, we need a larger model space to reveal the real structure.

# Collaborators

**UMOA Ryoji Okamoto (Kyushu Inst. of Tech.)** Kenji Suzuki (Kyushu Inst. of Tech.) "No-core" shell model Takahiro Mizusaki (Senshu Univ.) **Takaharu Otsuka (Univ. of Tokyo)** Takashi Sebe (Hosei Univ.) **Akito Arima (Japan Science Foundation)** Application of the "No-core" shell model to <sup>18</sup>O **Bruce R. Barrett (Univ. of Arizona)**