Tensor optimized shell model using bare interaction for light nuclei

Takayuki MYO Osaka Institute of Technology

In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN

First EMMI-EFES workshop on neutron-rich exotic nuclei EENEN 09 - Realistic effective nuclear forces for neutron-rich nuclei -GSI Darmstadt 2009. 2.9-11

Outline

- ✓ Tensor Optimized Shell Model (TOSM)
- Unitary Correlation Operator Method (UCOM)
- TOSM + UCOM with bare interaction
- ✓ Application of TOSM to Li isotopes
 - Halo formation of ¹¹Li
- TM, K.Kato, H.Toki, K.Ikeda, PRC76(2007)024305
- TM, K.Kato, K.Ikeda,
- TM, Sugimoto, Kato, Toki, Ikeda,
- TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda,
- TM, H. Toki, K. Ikeda,

PRC76(2007)054309 PTP117(2007)257 PTP119(2008)561 PTP119(2008)561

Motivation for tensor force

- Tensor force (V_{tensor}) plays a significant role in the nuclear structure.
 - In ⁴He, $\langle V_{tensor} \rangle \Box \langle V_{central} \rangle$

$$-\frac{V_{\pi}}{V_{NN}} \sim 80\% \text{ (GFMC)}$$

$$\tau \sigma \bullet \nabla / \int_{J^{\pi} = 0^{-}}^{\pi} \tau \sigma \bullet \nabla / \int_{T = 1}^{\pi} \tau \sigma \bullet \nabla$$

R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, PRC62(2001)

- We would like to understand the role of V_{tensor} in the nuclear structure by describing tensor correlation explicitly.
 - ✓ model wave function (shell model and cluster model)
 - ✓ He, Li isotopes (LS splitting, halo formation, level inversion)
- Structures of light nuclei with bare interaction
 - ✓ tensor correlation + short-range correlation

Tensor & Short-range correlations

• Tensor correlation in TOSM (long and intermediate)

$$-S_{12} \propto \left[Y_2(\hat{r}), [\vec{\sigma}_1, \vec{\sigma}_2]_2\right]_0 \rightarrow \Delta L = \Delta S = 2$$

- 2p2h mixing optimizing the particle states (radial & high-L)
- Short-range correlation
 - Short-range repulsion in the bare NN force
 - Unitary Correlation
 Operator Method (UCOM)

4

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 T. Neff, H. Feldmeier, NPA713(2003)311

Property of the tensor force

Long and intermediate ranges

Centrifugal potential (1GeV@0.5fm) pushes away the L=2 wave function.

Tensor-optimized shell model (TOSM)

- TM, Sugimoto, Kato, Toki, Ikeda Tensor correlation in the shell model type approach.
- Configuration mixing within 2p2h excitations with high-L orbit

TM et al., PTP113(2005) TM et al., PTP117(2007) T.Terasawa, PTP22('59))

PTP117(2007)257

- Length parameters $\{b_{\alpha}\}$ such as b_{0s} , $b_{0p1/2}$,... are determined independently and variationally.
 - Describe high momentum component from V_{tensor} CPP-HF by Sugimoto et al,(NPA740) / Akaishi (NPA738) CPP-RMF by Ogawa et al. (PRC73), CPP-AMD by Dote et al. (PTP115)

Hamiltonian and variational equations in TOSM

$$H = \sum_{i=1}^{A} t_i - T_G + \sum_{i < j}^{A} v_{ij}, \quad v_{ij} : \text{central+tensor+LS+Coulomb}$$

$$\Phi = \sum_k C_k \cdot \psi_k \quad \psi_k : \text{ shell model type configuration}$$

$$\delta \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 \implies \frac{\partial \langle H - E \rangle}{\partial b_\alpha} = 0, \quad \frac{\partial \langle H - E \rangle}{\partial C_k} = 0$$

TM, Sugimoto, Kato, Toki, Ikeda, PTP117('07)257

- Effective interaction : Akaishi force (NPA738)
 - G-matrix from AV8' with $k_Q = 2.8 \text{ fm}^{-1}$
 - Long and intermediate ranges of V_{tensor} survive.
 - Adjust V_{central} to reproduce B.E. and radius of ^4He

Configuration of ⁴He in TOSM

Energy (MeV)	- 28.0	4 Gaussians instead of HO
$\langle V_{tensor} \rangle$	- 51.0	$\langle T \rangle = 71.2 \text{ MeV}$
	$\langle V_{central} \rangle = -48.6 \text{ MeV}$	
(0s _{1/2}) ⁴	85.0 %	α m avaitation -0.6 MaV
$(0s_{1/2})^2_{JT}(0p_{1/2})^2_{JT}$ JT=10	5.0	c.m. excitation = 0.6 wev
JT=01	0.3	• 0 ⁻ of pion nature.
$(0s_{1/2})^2{}_{10}(1s_{1/2})(0d_{3/2})_{10}$	2.4	 deuteron correlation
$(0s_{1/2})^2{}_{10}(0p_{3/2})(0f_{5/2}){}_{10}$	2.0	with (J,T)=(1,0)
P[D]	9.6	Cf. R.Schiavilla et al. (GFMC) PRL98('07)132501

Tensor & Short-range correlations

- Tensor correlation in TOSM (long and intermediate)
 - $-S_{12} \propto \left[Y_2(\hat{r}), [\vec{\sigma}_1, \vec{\sigma}_2]_2\right]_0 \rightarrow \Delta L = \Delta S = 2$
 - 2p2h mixing optimizing the particle states (radial & high-L)
- Short-range correlation
 - Short-range repulsion in the bare NN force
 - Unitary Correlation
 Operator Method (UCOM)

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

T. Neff, H. Feldmeier NPA713(2003)311

Unitary Correlation Operator Method

$$\Psi_{\text{corr.}} = \underbrace{C} \cdot \Phi_{\text{uncorr.}} \text{TOSM}$$
short-range correlator $C^{\dagger} = C^{-1}$ (Unitary trans.)

$$H\Psi = E\Psi \rightarrow C^{\dagger}HC\Phi \equiv H\Phi = E\Phi$$
Bare Hamiltonian Shift operator depending on the relative distance **r**

$$C = \exp(-i\sum_{i < j} g_{ij}), \quad g_{ij} = \frac{1}{2} \{ p_r s(r_{ij}) + s(r_{ij}) p_r \} \quad \vec{p} = \vec{p}_r + \vec{p}_{\Omega}$$

$$R'_+(r) = \frac{s(R_+(r))}{s(r)} \quad R_+(r) \Box r + s(r) \qquad 2\text{-body cluster expansion of Hamiltonian}$$

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

E

Short-range correlator : C (or C_r)

⁴He in UCOM (Afnan-Tang, V_c only)

⁴He with AV8' in **TOSM+UCOM**

- Gaussian expansion for particle states (6 Gaussians)
- Two-body cluster expansion of Hamiltonian

Extension of UCOM : S-wave UCOM

 $C_S, R^S_+(r)$ for only relative S-wave wave function – minimal effect of UCOM

$$C_{S}^{\dagger}TC_{S} = T + \Delta T \qquad \text{for s-wave}$$

$$C_{S}^{\dagger}V_{\text{central}}(r)C_{S} = \hat{V}_{\text{central}}(r) \qquad \text{for s-wave}$$

$$C_{S}^{\dagger}V_{\text{LS}}(r)C_{S} = V_{\text{LS}}(r) \qquad \text{No change}$$

$$\left\langle \psi_{S}^{\text{rel}} \middle| V_{\text{tensor}}(r) \middle| \psi_{D}^{\text{rel}} \right\rangle = \left\langle C_{S}\phi_{S}^{\text{rel}} \middle| V_{\text{tensor}}(r) \middle| \phi_{D}^{\text{rel}} \right\rangle$$

$$\boxed{\text{SD coupling}}$$

$$21(2009) \text{ in press} \qquad \left\langle V_{\text{tensor}} \right\rangle \square 5 \text{ MeV gain}$$

15

PTP1

Different effects of correlation function

Characteristics of Li-isotopes

I. Tanihata et. al PLB206(1988)592

- Breaking of magicity N=8
 - ¹⁰⁻¹¹Li, ¹¹⁻¹²Be
 - ¹¹Li ... (1s)² ~ 50%.

(Expt by Simon et al., PRL83)

• Mechanism is unclear

Expected effects of pairing and tensor correlations in ¹¹Li

Pairing-blocking :

K.Kato,T.Yamada,K.Ikeda,PTP101('99)119, Ma TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133,

Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

¹¹Li in coupled ⁹Li+n+n model

- System is solved based on RGM $H(^{11}\text{Li}) = H(^{9}\text{Li}) + H_{nn} \qquad \Phi(^{11}\text{Li}) = A \left\{ \sum_{i=1}^{N} \psi_{i}(^{9}\text{Li}) \cdot \chi_{i}(nn) \right\}$ $\sum_{i=1}^{N} \left\langle \psi_{i}(^{9}\text{Li}) \middle| H(^{11}\text{Li}) - E \middle| A \left\{ \psi_{i}(^{9}\text{Li}) \cdot \chi_{i}(nn) \right\} \right\rangle = 0$ $\psi_{i}(^{9}\text{Li}): \text{ shell model type configuration} \rightarrow \textbf{TOSM}$
- Orthogonality Condition Model (OCM) is applied.

 $\sum_{i=1}^{N} \left[H_{ij}({}^{9}\text{Li}) + (T_{1} + T_{2} + V_{c1} + V_{c2} + V_{12}) \cdot \delta_{ij} \right] \chi_{j}(nn) = E \chi_{i}(nn)$ $H_{ij}({}^{9}\text{Li}) = \left\langle \psi_{i} \left| H({}^{9}\text{Li}) \right| \psi_{j} \right\rangle : \text{Hamiltonian for } {}^{9}\text{Li}$ $\chi(nn) = A \left\{ \varphi_{1}\varphi_{2} \right\} : 2 \text{ neutrons with Gaussian expansion method}$ $\left\langle \varphi_{i} \left| \varphi_{\alpha} \right\rangle = 0, \left\{ \phi_{\alpha} \in {}^{9}\text{Li} \right\} : \text{Orthogonality to the Pauli-forbidden states} \right\}$

Boundary condition of the coupled ⁹Li+n+n model

TM, K.Kato, H.Toki, K.Ikeda, PRC76('07)024305. TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda, PTP119('08)561.

¹¹Li G.S. properties ($S_{2n}=0.31$ MeV)

Pairing correlation of last 2n couples (0p)² and (1s)²²²

2n correlation density in ¹¹Li

Virtual s-wave states in ¹⁰Li

- $1s_{1/2}$ virtual state: $(0p_{3/2})_{\pi}(1s_{1/2})_{\nu} \rightarrow 1^{-}, 2^{-}$
 - a_s: scattering length of ⁹Li+n

Tπ	Inert	Tensor
$J^{\prime\prime}$	core	+Pairing
1-	+1.4 fm	-5.6 fm
2-	+0.8 fm (-17.4 fm

TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda PTP119(2008)561 arXiv:0803.0590 **Expt.** M. Thoennessen et al., PRC59 (1999)111. M. Chartier et al. PLB510(2001)24. H.B. Jeppesen et al. PLB642(2006)449.

a_s = -10 ~ -25 fm

cf. $a_s(nn)$: -18.5 ± 0.5 fm

Pauli-blocking naturally describes virtual s-state in ¹⁰Li

- Expt: T. Nakamura et al., PRL96,252502(2006)
- Energy resolution with \sqrt{E} =0.17 MeV.

Summary

- Tensor and short-range correlations
 - Tensor optimized shell model (TOSM)
 - Unitary Correlation Operator Method (UCOM)
 - Extended UCOM : S-wave UCOM
- Li isotopes with TOSM
 - Halo formation in ¹¹Li due to Pauli-blocking
- In TOSM+UCOM, we can study the nuclear structure starting from the bare interaction.
 - Spectroscopy of light nuclei (p-shell, sd-shell)

Hamiltonian of ¹¹Li

•2n : Gaussian expansion

TM, K.Kato, H.Toki, K.Ikeda, PRC76('07)024305. TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda, PTP119('08)561.

¹¹Li 2n configuration

Config.	Inert	Present	Exp.
(p _{1/2}) ²	90.6	42.7	
(S _{1/2}) ²	4.3	46.9	45±10
(p _{3/2}) ²	0.8	2.5	Simon et al.,PRL83
(d _{3/2}) ²	1.3	1.9	
(d _{5/2}) ²	2.1	4.1	
$(f_{5/2})^2$	0.2	0.5	
$(f_{7/2})^2$	0.3	0.6	

Tensor correlation in ⁶He

TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681

⁶He results in coupled ⁴He+n+n model

- (0p_{3/2})² can be described in Naive ⁴He+n+n model
- $(0p_{1/2})^2$ loses the energy \longrightarrow Tensor suppression in 0^+_2

Pion exchange interaction vs. V_{tensor}

$$S_{12} = 3(\vec{\sigma}_1 \cdot \hat{q})(\vec{\sigma}_2 \cdot \hat{q}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

- V_{tensor} produces the high momentum component.

Coulomb breakup strength of ⁶He

⁶He : 240MeV/A, Pb Target (T. Aumann et.al, PRC59(1999)1252)