Clusters and Halos studied in Fermionic Molecular Dynamics

10 ¹⁷Ne - p ¹⁷Ne - n 0.001-0.01 5 0.00, z [fm] 0 -5 -10 -5 1-01 0 10 -10 0 5 -5 0 5 x [fm] x [fm]

Thomas Neff

EENEN 09 First EMMI-EFES Workshop on Neutron-Rich Nuclei

> GSI Darmstadt February 10, 2009

Overview

Introduction

Unitary Correlation Operator Method

- Short-range Correlations
- Correlated Interaction

Fermionic Molecular Dynamics

- Cluster States in ¹²C
- Neon Isotopes di-proton halo in ¹⁷Ne

Central and Tensor Correlations

$$\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega$$
$$\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p} \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}$$

Central and Tensor Correlations

$$\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega$$
$$\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p} \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}$$

Central Correlations

$$c_r = \exp\left\{-\frac{i}{2}\{p_r s(r) + s(r)p_r\}\right\}$$

 probability density shifted out of the repulsive core

Central and Tensor Correlations

 $C = C_{\Omega}C_{r}$

$\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega$ $\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p} \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}$

Central Correlations

$$c_r = \exp\left\{-\frac{i}{2}\left\{p_r s(r) + s(r)p_r\right\}\right\}$$

 probability density shifted out of the repulsive core

Tensor Correlations

$$c_{\Omega} = \exp\left\{-i\vartheta(r)\left\{\frac{3}{2}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{p}_{\Omega})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{r}) + \frac{3}{2}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{r})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{p}_{\Omega})\right\}\right\}$$

 tensor force admixes other angular momenta

 \mathbf{p}_r

p

Central and Tensor Correlations

 $C = C_{\Omega}C_{r}$

$\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega$ $\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p} \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}$

Central Correlations

$$c_r = \exp\left\{-\frac{i}{2}\left\{p_r s(r) + s(r)p_r\right\}\right\}$$

 probability density shifted out of the repulsive core

Tensor Correlations

$$c_{\Omega} = \exp\left\{-i\vartheta(r)\left\{\frac{3}{2}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{p}_{\Omega})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{r}) + \frac{3}{2}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{r})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{p}_{\Omega})\right\}\right\}$$

 tensor force admixes other angular momenta

Thomas Neff — EENEN09, 02/10/09

 \mathbf{p}_r

p

ucoм Correlated Two-Body Densities and Energies

central correlator C_r shifts density out of the repulsive core tensor correlator C_{Ω} aligns density with spin

orientation

T. Neff and H. Feldmeier, Nucl. Phys. A713 (2003) 311

ucoм Correlated Two-Body Densities and Energies

central correlator C_r shifts density out of the repulsive core

tensor correlator C_{Ω} aligns density with spin orientation

both central and tensor correlations are essential for binding

T. Neff and H. Feldmeier, Nucl. Phys. A713 (2003) 311

ucoм Correlated Interaction in Momentum Space

Correlated Interaction in Momentum Space

correlated interaction is **more attractive** at low momenta

off-diagonal matrix elements

connecting low- and high- momentum states are **strongly** reduced

Fermionic Molecular Dynamics

Motivation

FMD Wave Functions

Nucleon-Nucleon Interaction

Mean-Field Calculations

Projection After Variation, Variation After Projection and Multiconfiguration

Exotica: Special Challenges

Al-Khalili, Nunes, J. Phys. G 29, R89 (2003)

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- superposition of two wave packets for each single particle state

Rev. Mod. Phys. **72** (2000) 655 Nucl. Phys. **A745** (2004) 3

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- superposition of two wave packets for each single particle state

Rev. Mod. Phys. **72** (2000) 655 Nucl. Phys. **A745** (2004) 3 Antisymmetrization

(One-body) Kinetic Energy

 $\langle q_{k} | \underline{\mathcal{T}} | q_{l} \rangle = \langle a_{k} \mathbf{b}_{k} | \underline{\mathcal{T}} | a_{l} \mathbf{b}_{l} \rangle \langle \chi_{k} | \chi_{l} \rangle \langle \xi_{k} | \xi_{l} \rangle$

$$\langle a_k \mathbf{b}_k | \underline{T} | a_l \mathbf{b}_l \rangle = \frac{1}{2m} \left(\frac{3}{a_k^* + a_l} - \frac{(\mathbf{b}_k^* - \mathbf{b}_l)^2}{(a_k^* + a_l)^2} \right) R_{kl}$$

(Two-body) Potential

- fit radial dependencies by (a sum of) Gaussians $G(\mathbf{x}_1 - \mathbf{x}_2) = \exp\left\{-\frac{(\mathbf{x}_1 - \mathbf{x}_2)^2}{2\kappa}\right\}$
- Gaussian integrals

$$\langle a_k \mathbf{b}_k, a_l \mathbf{b}_l | \mathcal{G} | a_m \mathbf{b}_m, a_n \mathbf{b}_n \rangle = R_{km} R_{ln} \left(\frac{\kappa}{\alpha_{klmn} + \kappa} \right)^{3/2} \exp \left\{ -\frac{\boldsymbol{\rho}_{klmn}^2}{2(\alpha_{klmn} + \kappa)} \right\}$$

- analytical formulas for matrix elements

$$\alpha_{klmn} = \frac{a_k^* a_m}{a_k^* + a_m} + \frac{a_l^* a_n}{a_l^* + a_n}$$

$$\boldsymbol{\rho}_{klmn} = \frac{a_m \mathbf{b}_k^* + a_k^* \mathbf{b}_m}{a_k^* + a_m} - \frac{a_n \mathbf{b}_l^* + a_l^* \mathbf{b}_m}{a_l^* + a_n}$$
$$R_{km} = \langle a_k \mathbf{b}_k | a_m \mathbf{b}_m \rangle$$

tensor correlations also change the spin-orbit part of the interaction

Nucl. Phys. **A745** (2004) 3

Effective two-body interaction

- FMD model space can't describe correlations induced by residual medium-long ranged tensor forces
- use **longer ranged tensor correlator** to partly account for that
- no three-body forces, saturation with UCOM force not correct
- add phenomenological two-body correction term with a momentumdependend central and (isospin-dependend) spin-orbit part (about 15% contribution to potential)
- fit correction term to binding energies and radii of "closed-shell" nuclei (⁴He, ¹⁶O, ⁴⁰Cα), (²⁴O, ³⁴Si, ⁴⁸Cα)

– Todo:

use **three-body** or **density dependent two-body force** instead of two-body correction term

FMD Perform Variation

Minimization

• minimize Hamiltonian expectation value with respect to all single-particle parameters q_k

$$\min_{\{q_k\}} \frac{\langle Q | H - T_{cm} | Q \rangle}{\langle Q | Q \rangle}$$

- this is a Hartree-Fock calculation in our particular single-particle basis
- the mean-field may break the symmetries of the Hamiltonian

FMD PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- perform Variation after Parity Projection PAV $^{\pi}$
- full Variation after Angular Momentum Projection (VAP)
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface

$$\mathop{\underset{\sim}{P}}\nolimits^{\pi}=\frac{1}{2}(1+\pi\underset{\sim}{\Pi})$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) \stackrel{R}{\sim} (\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \, \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- perform Variation after Parity Projection PAV $^{\pi}$
- full Variation after Angular Momentum Projection (VAP)
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface

Multiconfiguration Calculations

• **diagonalize** Hamiltonian in a set of projected intrinsic states

$$\left\{ \left| \, \mathbf{Q}^{(a)} \, \right\rangle \,, \quad a = 1, \ldots, N \right\}$$

$$\underset{\sim}{P^{\pi}} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$\sum_{K'b} \langle \mathbf{Q}^{(\alpha)} | \underbrace{HP}_{KK'}^{J^{\pi}} \underbrace{P^{\mathbf{P}=0}}_{KK'} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha} = E^{J^{\pi}\alpha} \sum_{K'b} \langle \mathbf{Q}^{(\alpha)} | \underbrace{P}_{KK'}^{J^{\pi}} \underbrace{P^{\mathbf{P}=0}}_{KK'} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha}$$

Cluster States in ¹²C

Astrophysical Motivation

Structure

• Is the Hoyle state a pure α -cluster state ?

- Other excited 0⁺ and 2⁺ states
- Compare FMD results to α -cluster model
- Analyze wave functions in harmonic oscillator basis
- No-Core Shell Model Calculations ?

7.2747

30

http://outreach.atnf.csiro.au/education/senior/astrophysics/stellarevolution_postmain.html

Cluster States in ¹²C Microscopic *α*-Cluster Model

 $R_{12} = (2, 4, \dots, 10) \text{ fm}$ $R_{13} = (2, 4, \dots, 10) \text{ fm}$ $\cos(\vartheta) = (1.0, 0.8, \dots, -1.0)$

alltogether 165 configurations

Basis States

• describe Hoyle State as a system of 3 ⁴He nuclei

 $\begin{aligned} \left| \Psi_{3\alpha}(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}); JMK\pi \right\rangle = \\ P^{J}_{MK} P^{\pi} \mathcal{A} \left\{ \left| \psi_{\alpha}(\mathbf{R}_{1}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{2}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{3}) \right\rangle \right\} \end{aligned}$

Volkov Interaction

- simple central interaction
- parameters adjusted to reproduce α binding energy and radius, $\alpha - \alpha$ scattering data and C12 ground state energy
- ✗ only reasonable for ⁴He, ⁸Be and ¹²C nuclei

'BEC' wave functions

• same interaction and α -cluster parameters used by Funaki et al.

Kamimura, Nuc. Phys. **A351** (1981) 456 Funaki et al., Phys. Rev. C **67** (2003) 051306(R)

Basis States

Cluster States in¹²C

FMD

- 20 FMD states obtained in Variation after Projection on 0⁺ and 2⁺ with constraints on the radius
- 42 FMD states obtained in Variation after Projection on parity with constraints on radius and quadrupole deformation
- 165 α -cluster configurations
- projected on angular momentum and linear momentum

Interaction

• not tuned for α - α scattering or ¹²C properties

Cluster States in ¹²C α - α Phaseshifts

- Phaseshifts calculated with cluster configurations only (dashed lines)
- Phaseshifts calculated with additional FMD VAP configurations in the interaction region (solid lines)

 only cluster configurations included

- similar quality for description of α - α -scattering

Cluster States in ¹²C Comparison

	Exp ¹	Exp ²	Exp ³	FMD	α -cluster	'BEC' ⁴	
<i>E</i> (0 ⁺ ₁)	-92.16			-92.64	-89.56	-89.52	
$E^{*}(2_{1}^{+})$	4.44			5.31	2.56	2.81	experimental
Ε(3α)	-84.89			-83.59	-82.05	-82.05	situation for 0^+_3 and 2^+_2 states still unsettled
$E(0_{2}^{+}) - E(3\alpha)$	0.38			0.43	0.38	0.26	
$E(0_{3}^{+}) - E(3\alpha)$	(3.0)	2.7(3)	3.96(5)	2.84	2.81		
$E(2^{+}_{2}) - E(3\alpha)$	(3.89)	2.6(3)	6.63(3)	2.77	1.70		
$r_{\rm charge}(0^+_1)$	2.47(2)			2.53	2.54		
$r(0^+_1)$				2.39	2.40	2.40	$2\frac{1}{2}$ resonance at
$r(0^{+}_{2})$				3.38	3.71	3.83	treshold included in NACRE compilation
$r(0_{3}^{+})$				4.62	4.75		
$r(2_{1}^{+})$				2.50	2.37	2.38	
$r(2^{+}_{2})$				4.43	4.02		
$M(E0, 0^+_1 \rightarrow 0^+_2)$	5.4(2)			6.53	6.52	6.45	-
$B(E2,2^+_1\rightarrow 0^+_1)$	7.6(4)			8.69	9.16		
$B(E2, 2_{1}^{+} \rightarrow 0_{2}^{+})$	2.6(4)			3.83	0.84		

¹ Ajzenberg-Selove, Nuc. Phys. A506, 1 (1990)
² Itoh et al., Nuc. Phys. A738, 268 (2004)
³ Fynbo et al., Nature 433, 137 (2005). Diget et al., Nuc. Phys. A738, 760 (2005)
⁴ Funaki et al., Phys. Rev. C 67, 051306(R) (2003)

Cluster States in ¹²C Electron Scattering Data

- compare with precise electron scattering data up to high momenta in Distorted Wave Born Approximation
- use intrinsic density

$$\rho(\mathbf{x}) = \sum_{k=1}^{A} \langle \Psi \, \big| \, \delta(\mathbf{x}_{k} - \mathbf{X} - \mathbf{x}) \, \big| \Psi \, \rangle$$

- elastic form factor described very well by FMD
- transition form factor better described by cluster model

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Phys. Rev. Lett. 98 (2007) 032501

Cluster States in ¹²C Important Configurations

• Calculate the overlap with FMD basis states to find the most important contributions to the Hoyle state

loosely bound, gas-like states

FMD basis states are not orthogonal!

Cluster States in ¹²C Overlap with Cluster Model Space

Calculate the overlap of FMD wave functions with pure α -cluster model space

$$N_{\alpha} = \langle \Psi | \underbrace{P}_{\exists \alpha} | \Psi \rangle$$

Cluster States in ¹²C Harmonic Oscillator NħΩ Excitations

Y. Suzuki et al., Phys. Rev. C 54 (1996) 2073

$$\operatorname{Occ}(N) = \langle \Psi \left| \delta \left(\sum_{i} (\mathcal{H}_{i}^{HO} / \hbar \Omega - 3/2) - N \right) \right| \Psi \rangle$$

Thomas Neff — EENEN09, 02/10/09

Cluster States in ¹²C Harmonic Oscillator NħΩ Excitations

Y. Suzuki et al, Phys. Rev. C 54, 2073 (1996).

$$\operatorname{Occ}(N) = \langle \Psi \left| \delta \left(\sum_{i} (\mathcal{H}_{i}^{HO} / \hbar \Omega - 3/2) - N \right) \right| \Psi \rangle$$

Thomas Neff — EENEN09, 02/10/09

Hoyle State α -cluster states in the No-Core Shell Model ?

- compare spectra in NCSM and $\alpha\text{-cluster}$ model using the Volkov interaction
- bare interaction used in NCSM calculations
- **–** good agreement for ground state band $(0^+_1, 2^+_1, 4^+_1)$
- very slow convergence for cluster states

Binding energies

	⁴ He	¹² C
Cluster	-27.3 MeV	-89.6 MeV
NCSM	-28.3 MeV	-95.4 MeV

Neon Isotopes ¹⁷Ne-²²Ne

Structure

- s^2/d^2 occupation in ¹⁷Ne and ¹⁸Ne
- ³He and ⁴He cluster admixtures

Observables

- Charge Radii
- Matter Radii
- Is ¹⁷Ne a Halo nucleus ?

Neon Isotopes Calculation

- Variation after parity projection on positive and negative parity
- Crank strength of spin-orbit force, changes properties of single-particle orbits and their occupations
- "*s*²" and "*d*²" minima in ^{17,18}Ne
- explicit cluster configurations:
 - ¹⁷Ne: ¹⁴O-³He ¹⁸Ne: ¹⁴O-⁴He
 - ¹⁹Ne: ¹⁶O-³He and ¹⁵O-⁴He
 - ²⁰Ne: ¹⁶O-⁴He
 - ²¹Ne: "¹⁷O"-⁴He
 - ²²Ne: "¹⁸O"-⁴He

Intrinsic proton/neutron densities of dominant FMD state

• Neon Isotopes

Separation energies

Separation Energies

Thomas Neff — EENEN09, 02/10/09

Neon Isotopes

Charge and Matter Radii

- cluster admixtures responsible for large charge radii in ^{19–22}Ne
- measurements of charge radii by COLLAPS@ISOLDE

 matter radii from interaction cross sections

A. Ozawa *et al.*, Nuc. Phys. **A693** (2001) 32

good agreement with expection of ¹⁹Ne

W. Geithner, T. Neff et al., Phys. Rev. Lett. 101, 252502 (2008)

Neon Isotopes ¹⁷Ne **Halo ?**

Summary

Unitary Correlation Operator Method

- Explicit description of short-range central and tensor correlations
- Phase-shift equivalent correlated interaction V_{UCOM}
- Interaction in momentum-space
- *ab initio* calculations with few- and many-body methods

Fermionic Molecular Dynamics

- Microscopic many-body approach using Gaussian wave-packets
- Consistent description of well bound states with shell structure and loosely bound states of cluster or halo nature
- ¹²C spectrum, Hoyle state and other high-lying 0⁺ and 2⁺ states, monopole transition form factor, analysis of FMD wave functions in harmonic oscillator basis, comparison with no-core shell model calculations
- Neon isotopes, separation energies, charge and matter radii, halo structure in ¹⁷Ne, importance of cluster admixtures in ^{19–22}Ne ground states

Thanks

to my Collaborators

S. Bacca, A. Cribeiro, R. Cussons, H. Feldmeier, P. J. Ginsel, B. Hellwig, K. Langanke, R. Torabi, D. Weber

GSI Darmstadt

H. Hergert, R. Roth

Institut für Kernphysik, TU Darmstadt