Results of the radiator quality test

Roland Hohler

GSI, Darmstadt JWG University Frankfurt

PANDA Collaboration Meeting March 2-6, 2009 at GSI

Heraeus bar (H3) Delivered bars are rejections!

Reflection coeff. uncertainty contributions

Statistics

Bulk attenuation

Mirror correction

PD homogeneity

Cleaning

surface homogeneity

Front surface loss

Adjustment (Brewster angle)

 $\approx 0.3\%$ for transmission

 $\Lambda_{\rm bar} = 281 \pm 97 \, \text{m}$ (quartz) transmission: $T = R^N \cdot \exp\left(-\frac{L}{\Lambda}\right)$ 0.9718 (correction factor) in this talk in this talk in this talk ???

???

Mirror correction

 $T_{cor} = T_{meas}$ cor

70

80

90

Homogeneity of the measurement diode

5 / 15

Cleaning (Lithotec, L2)

whole bar cleaned with the "wipe & dry"-method and sidolin

defined pollution: saliva (20 - 90% loss)

7 / 15

Bar homogeneity (L2, thin lateral)

15 reflections

16 reflections

 $T = 0.9844 \pm 0.0044$ $T = 0.9836 \pm 0.0044$

=> main error contribution not enough statistic to seperate between bar surface inhomogeneity and cleaning effect

Transmission profile (L2, wide lateral)

31 reflections

$T = 0.9581 \pm 0.0095$

cleaning of the wide lateral sides is more difficult than for the thin ones

Reflection coefficient & roughness (L2)

N =15 refl.16 refl.31 refl.T = 0.9844 ± 0.0044 0.9836 ± 0.0044 0.9581 ± 0.0095 $T = R^N \cdot exp\left(-\frac{L}{\Lambda}\right) \qquad \qquad L = \sqrt{l^2 + b^2 \cdot N^2}$ $1 - R = \left(\frac{4\pi \cdot \sigma \cdot \cos \Theta}{\lambda}\right)^2 \quad \Theta = 55.6^{\circ} \text{ (Brewster)}$ $\sigma = 21.6 \pm 4.1 \text{ Å}$ 21.6 $\pm 3.8 \text{ Å}$ 26.9 $\pm 3.4 \text{ Å}$ Lithotec specification: 20 Å

11 / 15

Bulk attenuation (Plexi)

090218_bulkMatrix_Plexi_covered: several bar positions (matrix)

 $T = 0.8714 \pm 0.0039$

 $n_{glass} = 1.5275 \pm 0.0009$ $n_{oil} = 1.470 \pm 0.017$ $n_{acryl} = 1.495$

=> Λ_{acryl} = 18.1 ± 1.6 m

Transmission (Plexi) No surface inhomogeneity included !

thin lateral (17 refl.): $T = 0.1216 \pm 0.0003$ ($\Theta = 56.0^{\circ}$) (with glass plates, spot very smeared)

wide lateral (30 refl.): $T = 0.7473 \pm 0.0003$ ($\Theta = 56.0^{\circ}$) (with glass plates)

w/o glass plates: $T = 0.6384 \pm 0.0003$ ($\Theta = 56.2^{\circ}$)

large difference between glass plates and w/o not clear

Reflection coefficient & roughness (Plexi)

17 refl.	30 refl.	30 refl.
with glass plates	with glass plates	w/o glass plates
Θ = 56.0°	56.0°	56.2°
R[Θ]=0.8866 ± 0.0003	0.9922 ± 0.0003	0.9870 ± 0.0003
σ = 256.4 ± 0.3 Å	67.2 ± 1.3 Å	87.3 ± 0.7 Å
only statistical error		

- lateral side treated with diamond needle is very rough
- sides produced by float glass technique is 3-4 times rougher than the polished Lithotec quartz bars

Summary & To-Do-list

- lateral sides of the Heraeus bars are curved
- main error contribution on the reflection coefficient seems to be the surface inhomogeneity (need more statistic to seperate it from cleaning effects)
- measured roughness of a Lithotec quartz bar is consistent with the specifications
- roughness of a acryl glass bar is much larger than for the Lithotec bar (especially for the sides treated with a diamond needle)

- further roughness determinations (Heraeus, Lithotec, Russian)
- analysis of the front surface loss