Progress in Erlangen and Thoughts about Limitations of MCP-PMTs

A. Lehmann, A. Britting, W. Eyrich, F. Uhlig Universität Erlangen-Nürnberg

- Status in Erlangen
- Rate stability
- Lifetime
 - limiting factors
 - possible improvements

Albert Lehmann

SensL SPMArray

- active area $12x12 \text{ mm}^2$ with 4x4 channels $(3x3 \text{ mm}^2 \text{ SiPMs with } 35 \mu \text{m microcells})$
- bias supply and amplification board (x2200 for each channel)

- positive signals
 - fast rise time (<10 ns)
 - width <100 ns
- enormous dark count rate
 - $\sim 10 \text{ MHz/channel at}$ room temperature
 - a lot of pile-up

Surface Scans of Burle 25 µm (Rates)

- rather **uniform response** of the individual channels
- but **significant crosstalk** between the channels

Albert Lehmann

Surface Scans of Burle 25 µm (Gain)

 significant gain variations of almost factor 2 (1.5 to 2.8*10⁶) between channels

Albert Lehmann

Surface Scans of Burle 10 µm (Rates)

- less uniform response and more crosstalk than with 25 μm device
- **very strong gain fluctuations** (variation from 0.5 to 3.5*10⁶ !!)

Albert Lehmann

Hamamatsu MCP-PMT (R10754-00-L4)

- first studies of R10754-00-L4 (= SL10)
 - very fast signals (~750 ps FWHM)
 - problems with some standard discriminators
 - time resolution 30-40 ps

linear array of 4 pixels with 20x5 mm²

Albert Lehmann

Surface Scans of SL10 (Count Rates)

- very good uniform response of the individual channels
- but **crosstalk** between the channels

Albert Lehmann

Surface Scans of SL10 (Crosstalk I)

800

- two components in timewalk distributions
 - crosstalk inside detector
 - electronic crosstalk
- separation of components possible
- electronic crosstalk probably from voltage divider

Albert Lehmann

Surface Scans of SL10 (Crosstalk II)

- most of the crosstalk signal is probably caused by voltage divider
- real channel crosstalk inside the detector is small

Albert Lehmann

Rate Behaviour of SL10

- same response from 0.1 to 10^4 photons / sec \rightarrow gain only depends on anode current
- stable gain up to 5 MHz single photons per cm² (for 10⁶ gain)

Albert Lehmann

Single Photon Time Resolution of SL10

excellent time resolution of <35 ps for single photons

- measured with oscilloscope
- Philips Scientific 705 discriminator and Ortec FTA820 amplifier (x200)

Albert Lehmann

Reminder of MCP Performances

• **positive** for application in PANDA DIRC

- gain $>10^6 \rightarrow$ single photon detection okay
- time resolution <50 ps for single photons
- with pore size of $\leq 10 \ \mu m$ usage in B-field > 1 Tesla possible
- dark count ~10 kHz/cm² probably okay
- **negative** for application in PANDA DIRC
 - single photon rate stability only up to $\sim 1 \text{ MHz/cm}^2$ (except SL10)
 - maximum lifetime only ~1-2 C/cm²
 - defined as 30% loss of Q.E.
 - SL10 probably better

Albert Lehmann

Expected Rates and Charges

- Assumptions for simulation (A. Britting)
 - 10 pions per annihilation (5 charged and 5 neutral)
 - phase space distribution
 - $2*10^7$ annihilations
 - photon spectrum from 200 to 1000 nm
 - quantum efficiency (Q.E.) of BINP MCP-PMT
 - collection efficiency 100%
 - reflectivity 0.995

	total rate	anode rate (after Q.E.)	integrated anode charge
	[MHz/cm ²]	[MHz/cm ²]	[C/cm ² /year] at 10 ⁶ gain
Barrel-DIRC			
at upstream rim	60	5.6	28
at readout plane	1.7	0.16	0.8
Endcap DIRC			
TOP	19	1.9	9.6
focussing	7.5	0.76	3.8

Albert Lehmann

Rate Stability of Different MCP-PMTs

- quite different rate stability for each type of MCP-PMT
- Hamamatsu SL10 stable up to about 5 MHz/cm²

Albert Lehmann

Lifetime Measurements in Nagoya K. Kishimoto et al., NIM A564 (2006) 204									
	- 30 - 20 - 20 - 20	electron €+ ←+	Al protection layer						
	НРК	(x2)	Russia	n (x5)					
Al protection	0	X	0	X		from			
Correction eff.	37%	65%	40-60	55-60 %		o MCP material o Out gaseus 1st MCP 2nd MCP			
Effective area	11r	nm [¢]	18mm•		Photocathode				
Gain	1.9x10 ⁶	1.5x10 ⁶	3~4x10 ⁶						
TTS	34ps	29ps	30~40ps						
Photo-cathode	М	Multi-alkali (NaKSbCs)							
Quantum eff. at 400nm	21%	19%	16-2	20%	_				
Bias angle	130	deg	5deg						

Albert Lehmann

Lifetime – Gain

- fast drop at beginning (< 10¹³ photons/cm²)
- only slow drop later
 (> 10¹³ photons/cm²)
- maximum drop to 40% after 27*10¹³ phot/cm²
- gain can be recovered by increasing HV (up to a certain extent)

unclear what the gain would be after 10 years of PANDA operation (~10x more integrated irradiation)

Albert Lehmann

Lifetime – Quantum Efficiency

- Q.E. of Russian MCP-PMTs drops very fast
 - better with Al-layer but lifetime still much too short for PANDA
- Q.E. of HPK MCP-PMT wo Al-layer drops fast as well
- Q.E. of HPK MCP-PMT with Al-layer remains almost constant

only 10% Q.E. drop of HPK MCP with Al-layer after ~3.5 C/cm²

Albert Lehmann

Q.E. and Gain vs Anode Charge

- gain of some BINP MCPs appears quite robust
- but Q.E. of BINP MCPs drops to 50% after ~0.5 C/cm² charge

Albert Lehmann

Lifetime – Q.E. vs Wavelength

- large Q.E. drop at longer wavelenghts
- less aging problems with UV sensitive photo cathodes

Albert Lehmann

Scenario for PANDA-DIRCs

Use a narrow band of UV photons (e.g. 250-300 nm)

- disadvantage
 - dispersion problematic
 - but dispersion in narrow
 UV band is comparable to
 the dispersion of the total
 visible range
- advantage
 - more photons per nm
 - longer lifetime of UV photo cathode (e.g. CsTe)

Refractive Index

Albert Lehmann

Q.E. of UV Photo Cathodes

Albert Lehmann

Photon Rates in UV Range

- Alexander's simulations
 - assumptions as above (slide #13)
 - quantum efficiency of CsTe photocathode

	anode rate	(after Q.E.)	integrated anode charge		
	[MHz	/cm ²]	[C/cm ² /year] at 10 ⁶ gain		
	full spectrum	250-300 nm	full spectrum	250-300 nm	
Barrel-DIRC					
at upstream rim	8.5	1.4	43	7.1	
at readout plane	0.24	0.04	1.2	0.2	
Endcap DIRC					
TOP	2	0.29	10	1.5	
focussing	0.8	0.12	4	0.59	

Albert Lehmann

Summary and Outlook

- maybe we should put some thoughts upon using a narrow UV band as an option for the PANDA DIRCs
- immediate future in Erlangen
 - finalize analysis of Burle MCP surface scans
 - more studies with Hamamatsu SL10 (magnetic field behaviour)
 - investigate behaviour of Hamamatsu large area SiPMs
- mid term future
 - set up test stand for lifetime measurements
 - requires tools for Q.E. measurements (monochromator + calibrated reference photo diode)
 - laser pulser with 10-100 MHz repetition rate
 - set up test stand to investigate cooled SiPMs
 - investigate SL10 with protection layer
 - investigate diamond dynode PMTs

Albert Lehmann