Cryostat Mechanical Analysis - Very Preliminary

Andrea Bersani

INFN Sezione di Genova

Outline

- o A 3D model of the cryostat with supports was realised
- o The model is not yet complete
- o Some preliminary calculations were performed
- o The results are very encouraging
- A check would be appreciated...

o Addendum: some hints on the cryo turret dimensions

Excitations

Made on a Mac

Materials & Excitations

- Stainless Steel
 - Elasticity Modulus: 193 GPa
 - Yield Strength: 205 MPa
 - o Density: 8 kg/dm³
- o Aluminium Alloy (5083)
 - Elasticity Modulus: 75 GPa
 - o Yield Strength: 195 MPa
 - Density: 2.66 kg/dm³
- Nominal Excitations
 - Magnetic Force: 20t
 - Weight from Above: 10t

AA5083 Stress

AA5083 Displacement

AISI304 Stress

AlSI304 Displacement

AA5083 Stress (Safety Factors)

9

AA5083 Displ. (Safety Factors)

AISI304 Stress (Safety Factors)

11

AISI304 Displ. (Safety Factors)

Summary

- The stresses in nominal conditions are ~10% o the maximum allowable
- O With safety factors, the stresses are below 30% of the maximum allowable
- Deformations are under o.5mm
- o AISI304 is (obviously) more rigid
- AA5083 is lighter (good for muons?)
- A very preliminary analysis shows that the cryostat can partially compensate the yoke deformations

Addendum

Addendum 2

