Articulation between fundamental questions and their applications in laboratories in the the field of accelerators

Victor Malka^{1,2}

¹LOA, Laboratoire d'Optique Appliquée, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, France ²Weizmann Institute of Science, Rehovot, Israel

www.youtube.com/watch?v=qVO65x2IGbk

victor.malka@ensta.fr

Laser Plasma Accelerators : Outline

Introduction : context and motivations

Injection in a density gradient

Manipulating the longitunal momentum

Manipulating the transverse momentum

Conclusion and perspectives

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Laser Plasma Accelerators : Outline

Introduction : context and motivations

Injection in a density gradient

Manipulating the longitunal momentum

Manipulating the transverse momentum

Conclusion and perspectives

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Fundamental Research

Industrial Market for Accelerators

	11.1
	10
	-
-	

Application	Total syst. (2007) approx.	System sold/yr	Sales/yr (M\$)	System price (M\$)
Cancer Therapy	9100	500	1800	2.0 - 5.0
Ion Implantation	9500	500	1400	1.5 - 2.5
Electron cutting and welding	4500	100	150	0.5 - 2.5
Electron beam and X rays irradiators	2000	75	130	0.2 - 8.0
Radio-isotope production (incl. PET)	550	50	70	1.0 - 30
Non destructive testing (incl. Security)	650	100	70	0.3 - 2.0
Ion beam analysis (incl. AMS)	200	25	30	0.4 - 1.5
Neutron generators (incl. sealed tubes)	1000	50	30	0.1 - 3.0
Total	27500	1400	3680	

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

The linear wakefield regime: GV/m electric field

The laser wake field : broad resonance condition $\tau_{\text{laser}} \sim \pi/\omega_p$ with $\omega_p \sim n_e^{1/2}$ i.e. $\lambda_p \sim 1/n_e^{1/2}$

electron density perturbation & longitudinal wakefield

The non-linear wakefield regime : 100's GV/m electric field

RF Cavity

Plasma Cavity

1 m => 100 MeV Gain Electric field < 100 MV/m

Electric field > 100 GV/m

Non Linear Wakefield V. Malka *et al.*, Science **298**, 1596 (2002)

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

loa

UMR 7639

The Non Linear Regime

loa

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Laser Plasma Accelerator: Non linear regime

Electric field components : Longitudinal and Transverse

Linear accelerating gradient

Linear Focusing gradient

http://loa.ensta.fr/

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

UMR 7639

«Salle Jaune Laser»: Home made laser

2 Joules in 2 laser beams of 30 fs duration delivered at 1 Hz

POLYTECHNIQUE

ENSTA ParisTech

UMR 7

ally ?" loa Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Laser Plasma Accelerators : Outline

Introduction : context and motivations

Injection in a density gradient

Manipulating the longitunal momentum

Manipulating the transverse momentum

Conclusion and perspectives

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Density drop => increase of the cavity lenght

the bubble expansion allows electrons injection and energy gain.

Sharp density ramp is requires to localize the injection and reduce the energy spread !

[Schmid et al., 2010; Buck et al., 2013]

UMR

POLYTECHNIQUE

ENSTA

Injection in a sharp density gradient

ENSTA

Density drop => increase of the cavity lenght

the bubble expansion allows electrons injection and energy gain.

Sharp density ramp is requires to localize the injection and reduce the energy spread !

Injection in a sharp density gradient

ENSTA

Density drop => increase of the cavity lenght

the bubble expansion allows electrons injection and energy gain.

Sharp density ramp is requires to localize the injection and reduce the energy spread !

Injection in a sharp density gradient

laser

Density drop => increase
of the cavity lenght

the bubble expansion allows electrons injection and energy gain.

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Sharp density ramp is requires to localize the injection and reduce the energy spread!

Injection in a shock front : principle

Injection in a shock front : pur helium gas

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

loa

Injection in a shock front : pur helium gas

Electron energies is controlled by the position of the blade

POLYTECHNIQUE

ENSTA

UMR 7

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

http://loa.ensta.fr/

loa

Injection in a shock front : helium/nytrogene mixture

(a)

He + N

(b)

POLYTECHNIQUE

ENSTA

UMR

He

Combinaison of two injection method (shock and ionization) to generate better beam quality with better stability

Thaury C., Guillaume E. et al., Scientific Reports 5 (2015)

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

http://loa.ensta.fr/

loa

Laser Plasma Accelerators : Outline

Introduction : context and motivations

Injection in a density gradient

Manipulating the longitunal momentum

Manipulating the transverse momentum

Conclusion and perspectives

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Overcoming the dephasing limit

since the laser group velocity is < c, when electrons energy is getting $\sim c$ they dephase

electrons reach the center of the cavity and start to be deccelerated

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

http://loa.ensta.fr/

OO

Overcoming the dephasing limit

since the laser group velocity is < c, when electrons energy is getting $\sim c$ they dephase

electrons reach the center of the cavity and start to be deccelerated

UMR

POLYTECHNIQUE

ENSTA

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

http://loa.ensta.fr/

OO

The reduction of the bubble size at the right position by increasing suddently the density resets the electrons phase. Electrons can start again

POLYTECHNIQUE

ENSTA

UMR

to gain energy.

R. Lehe

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

|OO|

↓Πe

Overcoming the dephasing limit

The reduction of the bubble size at the right position by increasing suddently the density resets the electrons phase.

Electrons can start again to gain energy.

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

|OO|

⊾Πe

Overcoming the dephasing limit

The reduction of the bubble size at the right position by increasing suddently the density resets the electrons phase.

Electrons can start again to gain energy.

R. Lehe

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

http://loa.ensta.fr/

|OO|

⊾Ne

Overcoming the dephasing limit: experimental set-up

Overcoming the dephasing limit: results

Wafer silicium 500 µm

The density transition is controlled by changing the wafer position

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

loa

UMR 7 X POLYTECHNIQUE

Overcoming the dephasing limit: experimental results & simulations

Calder-Circ PIC Simulations

Experiment

Energy boost of a mono-energetic e-beam

E. Guillaume et al., PRL 115 (2015)

R. Lehe

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

http://loa.ensta.fr/

loa

Laser Plasma Accelerators : Outline

Introduction : context and motivations

Injection in a density gradient

Manipulating the longitunal momentum

Manipulating the transverse momentum

Conclusion and perspectives

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Manipulating the p_{\perp} momentum : emittance definition

electrons beam emittance : ε_{rms} $\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2$ $\varepsilon_{rms} =$ \mathcal{X} transverse beam size divergence emittance is typical transverse size of the e-beam $< 1 \, \mu m$ dominated by the typical divergence of the e-beam : ~ 4 mrad divergence too large for example for some applications (FEL, ...)

Goal :

reduce the divergence of the beam by manipulating the transverse phase space

ENSTA

Manipulating the p_ momentum : experimental set-up

Acceleration stage

Laser beam:

0.9 J, 28 fs, 12 microns FWHM Focused with a 1 m OAP at the entrance of a 3 mm gas jet $n_1 = 9.2 \times 10^{18} \text{ cm}^{-3}$

Focusing stage

1 mm nozzle with variable n_2 Variable Ld

POLYTECHNIQUE

ENSTA

UMR

Manipulating the p_{\perp} momentum : demonstration of the laser plasma lens

Laser Plasma Accelerators : Outline

Introduction : context and motivations

Injection in a density gradient

Manipulating the longitunal momentum

Manipulating the transverse momentum

Conclusion and perspectives

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

http://loa.ensta.fr/

loa

http://loa.ensta.fr/

By improving the control of the electron motion with intense lasers one can shape the electric field and manipulate the beam properties in the phase space.

Laser Plasma Accelerators have made significant progresses delivering stable, reliable high quality and high current e-beams.

Applications in medicine (radiotherapy, cancer imaging, security) are almost here.

V. Malka et al., Nature Physics 4 (2008), V. Malka Phys. of Plasma 19, 055501 (2012) E. Esarey et al. , Rev. Mod. Phys. 81 (2009), S. Corde et al., Rev. Mod. Phys. 85 (2013)

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

http://loa.ensta.fr/

loa

Acknowledgements Emilien Guillaume¹, Sebastien Corde¹, Remi Lehe¹, Kim Ta Phuoc¹, Cédric Thaury¹, Agustin Lifschitz¹, Igor Andrivash¹, Antoine Rousse Stephane Sebban¹, Lazlo Veisz², S. W. Chou², Martin Hansson³, Olle Lundh³,

¹LOA, Laboratoire d'Outique Appliquée, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, France ²MPQ, Garching, Germany ³Lund Laser Center, Lund University, Lund, Sweden

Open positions for laser engineer and laser technician and for post-doc

ERC (Paris & X-five & XMED & VERSATILE), Charpac/Laserlab3 & ANAC2/Eucard2

Universities meet Laboratories, LAL University of Orsay France, November 3-4 (2016)

erc