

Present CAS Activities and Experience

Roger Bailey and Werner Herr (CERN/CAS)

"Universities meet Laboratories" Workshop, LAL Orsay, 3 - 4 November 2016

CERN Accelerator School (CAS) established in 1983, with the mandate:

"To preserve and transmit knowledge accumulated, at CERN and elsewhere, on particle accelerators and colliders of all kind"

- Takes place in different member states of CERN, member states (22) visited at least once, except Israel (member state since 2014), Romania (member state since 2016)
- Participants and lecturers from CERN member states and other countries world-wide

Provide framework for a series of courses:

- General accelerator physics (annually), alternating "Introductory" and "Advanced" course Very diversified programme to give a global picture, but strong emphasis on beam dynamics ($\approx 2/3$)
- Topical schools specialized in a field, yearly up to 2013, now (minimum) two per year due to high demand and TIARA outcome.
- Occasional courses within framework of Joint Accelerator School (JAS) together with USPAS, Japan, and Russia

Previous Schools

General courses (33 since 1983):

Residential courses, 2 weeks (50-60 hrs). Lectures, exercises, group projects and hands-on courses

Specialized topics (32 since 1983, 2 courses per year):

Residential courses, 1 week. Lectures, case studies

Joint Accelerator School (JAS, 13 schools since 1985):

Residential courses, 1 - 2 weeks. Lectures, homework, case studies

Introductory course:

- Lectures largest part of the programme (typically \approx 45) Core topics: linear beam dynamics and related themes
- Complemented by tutorials and dedicated discussion sessions

Advanced course:

- Strong focus on hands-on courses (all afternoons, lectures only in the morning)
- New core topics: Advanced beam dynamics concepts (in particular non-linear dynamics, collective effects, light sources)

Typical General School (Introductory level, 2016)

DRAFT PROGRAMME FOR INTRODUCTION TO ACCELERATOR PHYSICS 2 – 14 October, Budapest, Hungary

19:30	Buffet Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Special Dinner	
10.20	D. C.	R. Bailey	n.	n.	n.	n.	n.,				n.		
17.43	tration	Minute										Remarks	
17:30 17:45	Regis-	W. Herr 1 Slide 1	W. Herr	F. Tecker		G. de Rijk			E. Holzer	L. Comer		M. Ferrario Closing	
			R. Bailey/							Science			
		II				Magnets				of Lasers in Accelerator		Accelerator Concepts	
16:30		Particle Beams	Explanations	RF Systems		conducting	Session		Diagnostics	Applications		Advanced	
16:30		TEA Kinematics of	TEA Tutorial	TEA RF Systems		TEA Super-	TEA Poster		TEA Beam	TEA Seminar		TEA Seminar	
16:00		W. Herr	D. Alesini	B. Holzer	E.	S. Sheehy	JP. Burnet				r.	W. Herr	
					E	Machines					E		
		Particle Beams I – Relativity	Accelerators II	Linear Beam Dynamics III	E	Alternating Gradient	Converters		Electron Beam Dynamics	Collective Effects	E	All together	Y
15:00		Kinematics of	Linear	Transverse	R	Fixed Field	Power	N	Discussion on	Discussion on	R	Putting It	A
14:45	Y	G. Franchetti	B. Holzer	Machines I F. Tecker	F	G. de Riik	A, Wolski	О	G. Franchetti	G. Franchetti	F	D. Faircloth	D
		Theory II	Dynamics I	Circular			Dynamics II						_
	A	magnetic	Linear Beam Dynamics I	Beam Dynamics in		Magnets	Beam	I	Effects I	Effects III			
13:45	D	LUNCH Electro-	LUNCH Transverse	LUNCH Longitudinal	LUNCH	LUNCH Warm	LUNCH Non-Linear	S	LUNCH Collective	LUNCH Collective	LUNCH	LUNCH Sources	Е
12:15		G. Franchetti	S. Sheehy	M. Seidel	LINGH	LINGU	LINGT	R	L. Rivkin	I. Strasik	LINGT	LINGE	R
	L		П		Dynamics	Dynamics		U		Issues			U
		Theory I	magnetic Fields		Beam	Beam			Dynamics ii	Protection			-
11:15	A	Electro- magnetic	Particle Motion in Electro-	Cyclotrons II	Discussion on Transverse	Discussion on Longitudinal	Tutorial 1	C	Electron Beam Dynamics II	Beam Losses and Machine	Tutorial 2	Tutorial 3	Т
	V	COFFEE	COFFEE	COFFEE	COFFEE	COFFEE	COFFEE	X	COFFEE	COFFEE	COFFEE	COFFEE	R
10:45	I	R. Steerenberg	D. Alesini	B. Holzer	F. Tecker	G. Papotti	M. Grabski	E	E. Holzer	G. Franchetti	M. Fraser	K. Knie	A
	R				Circular Machines II		Accelerators						P
		Accelerators	I	Dynamics II	Dynamics in	a comucio	for Particle			2.11000.11	Extraction	Targets	
09:45	R	Introduction	Linear Accelerators	Transverse Linear Beam	Longitudinal Beam	Luminosity and Colliders	Vacuum Technology		Beam Instrumentation	Collective Effects II	Injection and	Secondary Beams and	Е
09:30	A		S. Sheehy	M. Seidel		S. Sheehy	A. Wolski		L. Rivkin	L. Rivkin	R. Ischebeck	M. Fraser	D
			I I			Accelerators	Dynamics 1			FELs I	and FELs II	Transfer	
			in Electro- magnetic Fields	-	Imperfections	of Accelerators	Beam Dynamics I		Dynamics I	Light Machines and	Light Machines	Septa and Beam	
08:30	2 Oct.	Opening Talks	Particle Motion	Cyclotrons I	Linear	Applications	Non-Linear	9 Oct.	Electron Beam	11 Oct. Synchrotron	12 Oct. Synchrotron	Kickers.	14 Oct.
Time	Sunday 2 Oct.	Monday 3 Oct.	Tuesday 4 Oct.	Wednesday 5 Oct.	Thursday 6 Oct.	Friday 7 Oct.	Saturday 8 Oct.	Sunday 9 Oct.	Monday 10 Oct.	Tuesday	Wednesday	Thursday 13 Oct.	Friday

Very diverse programme:

44 hour of lectures + 4 discussion sessions + tutorial

New strategy for tutorial introduced - well received by participants

Previous topical schools - training the skills

- > Magnets and alignment: (1986, 1992, 1997, 2009)
- > Superconductivity, Cryogenics: (1988, 1995, 2002, 2013)
- > RF Systems: (1991, 1993, 2000, 2010)
- > Diagnostics, signal processing: (2007, 2008, 2018)
- **Vacuum:** (1999, 2006, 2017)
- > Power Converters: (1990, 2004, 2014)
- > Small machine, high power machines: (1994, 2005, 2011)
- > Synchrotron radiation, FEL: (1989, 1996, 2003, 2016)

cont'd:

- **>** Ion Sources: (2012)
- Accelerators for medicine and industry: (2001, 2015)
- **Colliding beam facilities (1983)**
- > Plasma Wake Acceleration (2014)
- > Intensity Limitations (2015)
- > Injection, extraction and beam lines (2017)

Organization of CAS schools and programme:

CAS management staff, \approx 2.5 FTE (since 2011):

- Roger Bailey (head of school, $\approx 80\%$)
- Werner Herr (deputy head of school, presently 50%)
- Barbara Strasser (administrative assistance, full time)
- Bernhard Holzer (for part of topical courses organizes the preparation and running of the school, part time, $\approx 20\%$)
- * Hermann Schmickler (appointed as head of school from 2018)

Not part of CERN departmental structure, reports to CERN Directorate

Consultation with supporting bodies

Organization of CAS schools and programme:

- CAS Advisory Committee (meets once per year):
 - Membership: approved by CERN management (typically 50% 60% non-CERN members, universities and laboratories)
 - Review previous schools, suggest changes if needed (consider students' evaluation where applicable)
 - Propose subjects for future topical schools
 (consider demands and time since previous school on this topic)
 - Propose venues (country) for future schools
- Proposals subject to approval by CERN directorate

Organization of CAS schools and programme:

- CAS Programme Committee (meeting and consultation for each school):
 - Membership: CAS staff, experts on the school topics (normally more than 50 % non-CERN members, universities and laboratories)
 - Local university or laboratory as co-organizer represented
 - Review previous schools, including students' feedback
 - Propose lectures and lecturers for the courses
- Recommends programme to head of the school for decision

Evolution of the programme:

- > Schools are regularly revised to adapt to evolution in the field and improved teaching methods
- Recent (since 2016): updated <u>common syllabus</u> for general schools (Introductory and Advanced level)

Purpose:

- Ensure a coherent set of lectures, with advanced course as follow up of introductory course
- Take into account advancement in the field
- Input from lecturers and students, single programme committee for both schools
- Provide a well-defined foundation for topical courses

Financing

- Try to be cost neutral with students' fees: for running of the school, this includes accommodation, all meals, course material (fees strongly depend on local costs and country)
- All expenses for lecturers covered by CAS, but no remuneration for lecture
 - (relying on good will and dedication of lecturers, has not been a problem so far)
- Financial support for students (covers only fees, no travel): typically up to 5 students per school

Attendance:

Unlike USPAS/JUAS: much less focused on University Students

Staff of laboratories and universities (physicists, engineers,
technicians), undergraduate and PhD students, post docs, staff from
in industry working with accelerators

General schools:

- Introductory level: 110 130 participants (aim for 120)
- Advanced level: limited to 75 80 participants (due to afternoon courses)

Topical schools:

- Depends on topic: 60 - 100 participants

General schools often oversubscribed (up to 60%), then CV and reference letter required

Origin: Participants

	General schools	Topical schools
Laboratories:	78 %	80 %
Universities:	20 %	16 %
Industry:	max 2 %	4 - 10*) %
Non-member states:**) (by affiliation)	8 %	12 %

^{*)} depending on topic

^{**)} mostly: Russia, Japan, China

Education and background: Participants

As example: Introductory course, Budapest 2016

Participants with post-graduate university degree*) (Physics or engineering) 85 %

Where:

Without PhD: 49 %

With PhD: 29 %

PhD students: 22 %

Others: Technical engineers, technicians, operators, undergraduate students, BSc

*) Minimum: MSc/Diploma ⇒ BSc not counted

Level, prerequisites for participants (I)

- **Introductory Course:**
 - Basic knowledge in physics or engineering and mathematics (1st year university level)*).
 - No training in accelerator physics expected
- For this Course: typically rather large spread of background:

 (technicians, engineers, physicists (various disciplines), senior staff)
- Short recapitulation of background knowledge: Classical Electrodynamics, Special Relativity

^{*)} Basics of differential equations recommended

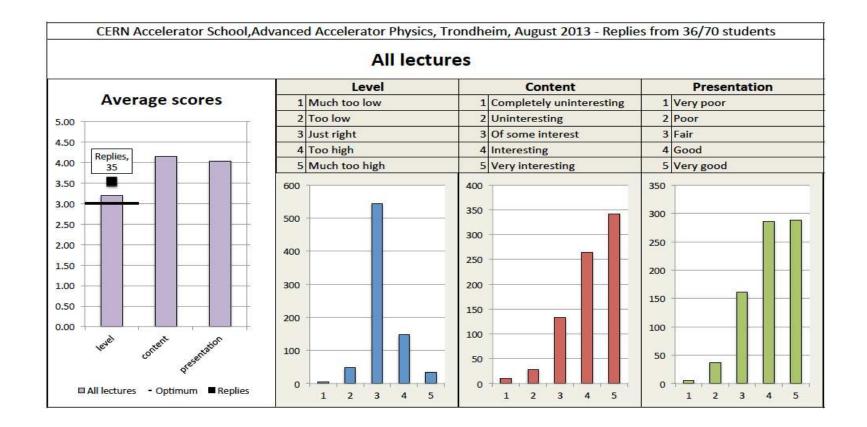
Level, prerequisites for participants (II)

- Advanced Course, all Topical schools:
 - Good knowledge in mathematics (1st year university level)*) and physics or engineering.
 - Basic training in accelerator physics or experience in Accelerator Operation or Technology
 - Reference letter and CV always required
- In general: material based on Introductory Course

^{*)} Basics of complex calculus and differential equations recommended

Expectations on lecturers

- General and topical schools:
 - Working in the field, with good teaching and communication skills, able to adapt to the right level of the course
 - In addition to lectures, contribute as tutor and facilitator in tutorials and group projects (including fields not related to own lectures), actively participate in discussions with students
 - Seek feedback, accept criticism and continue to improve lectures and keep material up to date (difficult)
 - Consult with other lecturers, agree on conventions, avoid contradictions (very difficult)
 - If foreseen: write up lectures for proceedings (extremely difficult)
- All lecturers invited on a personal basis


Origin: Lecturers

	General schools	Topical schools
Laboratories (CERN):	54 %	34 %
Laboratories (non-CERN):	34 %	47 %
Universities:	10 %	10 %
Industry:	max 2 %	8 %

Rare: retired lecturers

Evaluation of the schools

- **Quality of school and lectures are monitored:**
 - Participants are asked to evaluate quality and benefit of lectures (level, contents and presentation)
 (standard questionnaires and additional comments)
 - Evaluation includes organization and running of the school
 - Encourage feedback from teaching staff (not yet very successful)
- CAS Committees include evaluation to propose topics, lectures and lecturers

- Typical result (overall), separate for each lecture(r) as well
- Individual results are send to the lecturer concerned (There is a danger ... !)

Dissemination of material

- Proceedings for General and Topical schools:
 - So far: 36 proceedings in printed form
 - General schools: only when programme/contents have changed significantly, most recent: Advanced Course 2013
 - Topical schools: every school

On-line:

- On-line versions of written proceedings available since 1983 (CERN Document Server), on arXiv since 2010
- On INDICO since 2007/2009 (all slides and handouts)
- Material for hands-on courses (including software downloads) since 2003
- Budapest 2016: all lectures recorded for the first time
- All free of charge, but CERN copyright (ISBN, ISSN, DOI)

Credits for participation

- CAS is more focused on laboratory staff, credits on students' or universities' request
- Has to be coordinated with the university concerned, requirements can be:
 - Attendance
 - Syllabus
 - Attendance + Syllabus
 - Syllabus + Exam (by a CAS and a university representative)
- At CERN: attending CAS accepted as training

A more general approach is discussed in close collaboration with EPF Lausanne

Although aimed at professionals: want "academic" part

- Intention (sometimes subjected to criticism):
 - Introduce new research fields and new developments (e.g. acceleration techniques, ..)
 - Replace questionable and obsolete treatment, in particular beam dynamics, by contemporary methods
 - Promote teaching of beam dynamics beyond "standard" textbooks (e.g. non-linear dynamics, collective effects, computational methods, ...)
 (very well received by students, sometimes less by some lecturers)
- Improve teaching techniques and methods

Evolution of the teaching strategies

- In early schools: thematically oriented frontal teaching, since 1995 complemented by subject-specific exercises
- Recent strategy:
 - More focus on collaborative and problem based (active) learning (case studies in topical schools and group projects*)
 - Well received in all schools, but strongly increases load on facilitators/tutors (full time available, no formal result)
 - Our challenge: planning, organization and managing, provide necessary software and laboratory equipment (supply, transport, customs, setting up, ...)
 - Continuous evaluation of this approach together with students to improve
 - *) New approach tried at "Introductory Course" in Budapest 2016

General tutorial in Budapest 2016: Design Project

- > 2016: design a p-p collider complex, issues to consider:
 - Realistic parameter set, following user requirements
 - Look at: lattice, collective effect (space charge, beam-beam), synchrotron radiation
 - Specification of the necessary injector chain
- Work in groups of 6 people, a tutor available for guidance
- Presentation of the proposals the last day

MUCH better received than previous style of tutorials!

Advanced courses:

- > Strong focus on hands-on courses
- > All afternoons, lectures only in the morning
- > Typically 18 20 hours, but facilities usually available outside scheduled time (as well as some tutors)
- > Students choose one of 3 courses (remain there for the entire school):
 - Optics design
 - RF measurements techniques
 - Beam measurements

Hands-on courses: Optics Development

Personal Computer for each participant Limited to 25 participants Typically 3 to 5 tutors

<u>Software installed</u>:

 $Methodical\ Accelerator\ Design\ (MAD)$

PTC, TPSA package (CAS version)

gnuplot, adobe, etc...

LINUX operating system

(WINDOWS versions available)

 $Courtesy\ V.\ Chetvertkova$

Hands-on courses: RF Measurement Techniques

- RF measurement techniques with modern equipment
- Typically 2 3 tutors for 25 participants

Hands-on courses: Beam Measurement

- Understand basics of measurement principles and their implementation
- Working in small groups and present the outcome
- Interactive simulation tools are available

Final comments

- Complementary to university courses, different scope and audience, CAS does not replace university courses (or other schools)
- Close collaboration with universities and other laboratories:
 - Provide infrastructure for lectures and practical work, including instructors
 - Strong contacts between participants and lecturers, in particular for practical work. Cannot be replaced by e-learning
- Last but not least: many students come back as lecturers ... recent schools (Trondheim, Prague): 19 ex-students (out of 45)
- CAS is a full success since more than 30 years, increasing number of schools and participants, but ...