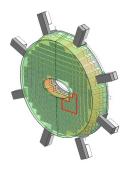
Temperature and Humidity Monitoring for Proto192

Florian Feldbauer

Experimental Hadron Physics Ruhr-Universität Bochum


March 3rd, 2009

The Proto192

- Prototype of the forward endcap of the EMC consisting of 192 PWO crystals
- Change of light yield: 4%/K at $-25^{\circ}C$ \Rightarrow guarantee temperature gradient of < 0.1 K/cm
- Avoid formation of ice
- Tests of degradation of light yield by ice are running
- Monitor the temperature and humidity with the THMP (Temperature and Humidity Monitoring Board for PANDA)

Sensors General description of the monitoring board

Features of the Temperature Sensors

- Temperature sensors developed by Jan Schulze
- 60 cm platinum wire fixed in Kapton foil with a resistance of 100 Ω at 0°C
- Dimensions: (30 \times 20) mm²
- To be mounted along the crystals
- Sensitivity of 0.05 K necessary $\hat{=}$ 0.2% change of light yield
- First sensors are produced and calibrated
- 0.05 K $\widehat{=}\,0.02~\Omega$

20mm	
	30 mm

Sensors General description of the monitoring board

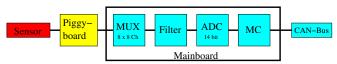
Humidity Sensors HIH-4000

- Tested by Patrick Friedel
- Linear voltage output \propto relative humidity (RH)
- Size of the sensor without pins $(4.2 \times 8.6) \text{ mm}^2$
- Operating range down to -40° C and 0% RH
- Accuracy of 3.5% RH
- Radiation hardness tested with 60 Gy by Rainer Novotny; no change could be observed
- Further tests will be done

C	1
7	R

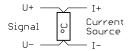
Sensors General description of the monitoring board

Temperature and Humidity Monitoring Board for PANDA (THMP)


- THMP developed by Patrick Friedel and F. Feldbauer
- Designed THMP as mainboard with connectors to 8 piggyback boards
- 64 channels
- Design as presented at last meeting:

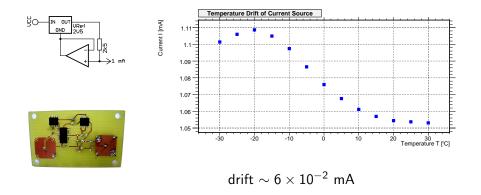
Sensors General description of the monitoring board

Current Design of the THMP

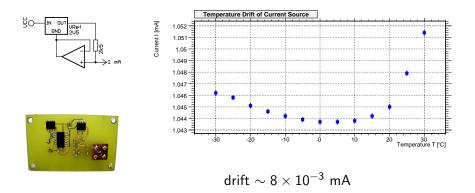

- Redesigned multiplexing \Rightarrow 8 × 8 channels
- Included filter between multiplexers and ADC to reduce noise
- Use new ADC (14 bit)
- Redesigned piggyback boards (exchanged nearly all parts)
- $\bullet \Rightarrow {\sf Reduced}$ power consumption, much higher accuracy and lower drifts of individual ICs
- Current Design:

Features of the Current Source First Tests of the Current Source

Current Source for the Temperature Sensors


• Read-out via four-terminal sensing:

- Current source provides 1 mA
- Measurement range $-30^{\circ}C$ to $+30^{\circ}C$
- To reach required accuracy drift should be less then 10^{-4} $0.05^\circ C$ at $0^\circ C \Rightarrow 0.02~\Omega$ at 100 Ω


Features of the Current Source First Tests of the Current Source

Current Source for the Temperature Sensors

Features of the Current Source First Tests of the Current Source

Current Source for the Temperature Sensors

Summary and Outlook

- Radiation hardness of the HIH-4000 tested with 60 Gy further tests with higher dose rates will be done
- Using piggyback boards to change number of temperature and humidity sensors
- Current temperature drift of current source is a bit too high
- Build prototype of THMP to test the other parts
- Use active or passive to reduce noise?
- Plan to build 5 boards for Proto192

Thank you for your attention