EMC – Status

R.Novotny

PANDA-Meeting @ GSI March 6, 2009

- crystal production, delivery and quality control
- prototype experience
- photo sensors (LAAPD, VPT)
- development for PROTO 192, endcap
- FE electronics
- backward endcap

status of production and delivery

Туре		Required Quantity (Without spares)	Lot B1	Lot B2	Lot B3	Lot B4	Lot B5	Lot B6	Lot B7	Lot B8
End Cap		complete	4400						700	
Barrel 1 L		640	21	21 0			113	695		
		640	354 0			157				
	9 R	320		0			330	325		
	9 L	320	0				0			
Total			4775			600	1020	700		
Delivered										X
Currently a 	t		Gie	ssen	CERN	Gies	ssen	Upj	psala	BTCP

Daniel Bremer - II. Physikalisches Institut - JLU Giessen

specification limits

Longitudinal Transmission	at 360 nm	≥35 %
	at 420 nm	≥ 60 %
	at 620 nm	≥70 %
Light Yield	at T = 18°C	≥16 phe/MeV
Radiation hardness	at 420 nm due to lateral ⁶⁰ Co irradiation. Integral Dose 30 Gy	$\Delta k \le 1 m^{-1}$ < $\Delta k \ge 0.75 m^{-1}$

transmission – lot B1 CERN/BTCP Measurements

transmission – lot B1 control measurements @GI

Lot B1

Longitudinal Transmission at Certain Wavelength

transmission – lot B1 comparison of mean values

correlations - lot B1 T@420nm CERN and BTCP

correlations - lot B1 T@420nm **GI vs CERN/BTCP**

Correlation of Longitudinal Transmission between Giessen and

Induced absorption coefficient at 420 nm, m⁻¹

O.Missevitch

radiation induced ∆k based on BTCP quality control

Light Yield, phe/MeV

O.Missevitch

O.Missevitch

spectra of the radiation induced absorption coefficient dk

time delay of measurements after irradiation ~ 1-5 minutes

spectra of the radiation induced absorption coefficient dk

time delay of measurements after irradiation ~ 1 day

V.Dormenev

corelation of radiation absorption: BTCP vs GI

time delay of measurements after irradiation ~ 1-5 minutes

corelation of radiation absorption: BTCP vs GI

time delay of measurements after irradiation ~ 1 day

recovery of PWO radiation absorption @ 420 nm

V.Dormenev

linearity of crystal response for all barrel shapes

M.Marteinsdottir

non-linearity of light collection

M.Marteinsdottir

summary

Type Volume [cm ³] θ _B [°] Nonuniformity				θ _A [°]	θ _c [°] Mean Value of			
	·····,				phe/MeV	/	Rel. Std %	
1	126.86	2.1	2.2	2.2	35.4	;	5.6	
2	126.56	2.1	2.1	2.2	34.5		7.8	
3	125.79	2.1	2.1	2.1	38.6	;	5.4	
4	120.85	1.7	1.9	2.0	26.8		6.1	
5	119.69	1.7	1.8	1.8	31.9		6.8	
6	118.35	1.7	1.6	1.6	31.3	;	5.5	
7	112.90	1.2	1.4	1.5	27.6		4.9	
8	111.75	1.2	1.3	1.3	31.9	;	3.9	
9	110.52	1.2	1.1	1.2	31.5		2.0	
10	107.01	0.9	1.0	1.0	30.5		2.6	
11	106.25	0.9	0.9	0.9	25.3		2.3	
Front	end cap crysta	al	0.5		21.5	(0.9	

M.Marteinsdottir

first in-beam test of PROTO60 @ MAMI

E_γ: 124MeV 1.44GeV

M.Moritz

response to cosmics recorded with SADC

E. Guliyev

time resolution:

cosmics

E. Guliyev

time resolution: high energy photons

panda

- response function and resolution
- position reconstruction
- simulation of conversion (2mm Pb)
- read-out with: peak sensing ADC / SADC

M.Moritz

PROTO60: energy resolution

E. Guliyev

Photo sensors: LAAPD

One APD of quadratic shape, 'Normal' Ct:

QE @ λ = 420 nm: ≈ 72%

Photo sensors: VPT

Hamamatsu R2148MOD especially made for $\overline{P}ANDA$, $\emptyset < 24 \text{ mm}$

- Ø = 23.7 mm ℓ = 30 mm
- U_A = 750 V
 U_D = 500 V
- G = 9.3
- QE = 32 % (at 420 nm)

S.Bolte

Photo sensors: VPT

	RIE	Photonis	R2148MOD1	R2148MOE
HV	1000 V	1090 V	800 V	750 V
G	10	30	11	9.3
QE	22 %	20 %	19 %	32 %
Ø	26.5 mm	25.2 mm	25.8 mm	23.7 mm
Ø _{sen.area}	19 mm	25 mm	18 mm	16 mm
rel. width	7.8 %	22.1 %	9.2 %	7.4 %
$G \cdot QE$	2.20	6.00	2.09	2.98
AMP	916	1728	649	1110
AMP G·QE	1.1	0.8	0.8	1

integration DIRC and FwEndcapEMC

light Al frame (540 kg) supported by solenoid, space for digitizing electronics: 16 times 0.4 m² = in total 6.5 m²

> inserts with alignment crosses foreseen in central hole

final decision needed: rectangular / elliptic hole?

identification of position gauges

reading accuracy 0.005 mm

alveole # NB003 sag progression after loading "crystals" from the back side

Proto NB003, back loaded and glue

displacement < 0.05 mm during 30 days

H. Löhner

Displacement (mm)

development for FW-Endcap and PROTO 192

- temperature and humidity sensors F. Feldbauer
- Fiber Bragg Grating Sensors H. Löhner

• humidity measurement: THMP F. Feldbauer

20mm

 integration of ADC cooling ! J. Becker

- ADC development P.Marciniewski
 - 12bit 15bit
 - sampling rate > 50MHz energy/time resolution
 - power consumption
 - radiation hardness ADC, FPGA, ...

barrel: FE-electronics, inserts, cables

progress but: many open questions:

- selection of components
- layout of PC-boards
- arrangement
- flexibility
- energy/time resolution
- link to other detectors ?

EVO-meetings

M.Kavatsyuk

Backward Endcap: simulations and many open questions

1) Tapered crystals (Forward EndCap geometry)

2) Straight crystals

Crystal size (mm): front: 24.4x24.4x200 back: 26x26x200

Diameter (mm) front face: 752.85

Fiber Bragg Gratings (FBG)

maximum reflectivity occurs at Bragg wavelength $\lambda_{\rm B}$ with $\lambda_{\rm B}$ = 2 $n_{\rm eff}~\Lambda$

where n_{eff} = effective refractive index of mode of propagation in fiber, and Λ = FBG period

Fibre Bragg Grating Sensor and Multiplexing Principle

FBG sensor systems: distributions of strain, temperature, refractive index, ..
 Wavelength Division Multiplexing (WDM)

Polychromator FBG Interrogator: Fibre Optics/Optoelectronics

SLD broadband light source 800 .. 860 nm: higher WDM capacity than @ 1550 nm
Low-cost polychromator: imaging diffractive grating (polymer replicated) & CCD detector
Simultaneous measurement of all sensors; no interference of scan rate/distance/wavelength!

H. Löhner

Technical Parameters of Polychromator Based FBG Sensor System

- Broadband source wavelength range: 805 .. 870 nm (= 10% strain)
- 32 sensors, measurement exactly simultaneously
- Measuring speed: 1000.00 measurements/s; Ethernet data to PC
- SPU operational temperature range: -40 .. +70 °C
- Sensor reflectivity: 2 .. 90 %
- 1σ rms noise at spectrometer full scale: 0.4 pm (= 0.6 με, 0.05 K)
- Noise reduction: Gaussian correlation, averaging, Kalman filter
- Sensor temperature operation range: -270 °C .. +300 °C (.. +900 °C)
- Sensor strain range: ±0.5 % (standard FBG), ±5 % (draw tower FBG)
- Bragg wavelength accuracy: 25 pm
- Max. length of fibre-optic transmission cable: ~ 1 km