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Plan of the talk

* Numerical relativity as a theoretical laboratory
* Anatomy of the GW signal
* Role of B-fields and EM counterparts

* Ejected matter and nucleosynthesis



The goals of numerical relativity

Finstein’s theory Is as beautiful as intractable analytically

Numerical relativity solves Einstein/H

Biieic

SFegs

regimes In which no approximation Is expected to hold.

To do this we builld codes: our ’theoretical laboratories”.



Think of them as a "factory” of "gedanken experiments”



The equations of numerical relativity

(field equations)
(cons. energy /momentum)

cons. rest mass)

(
(equation of state)
(Maxwell equations)

=y »‘:Tﬂ‘ﬂd iy o (energy — momentum tensor)

N vacuum space times the theory Is complete and the
truncation error Is the only error made: “"CALCULATION”




The equations of numerical relativity

1
i 3 g R =8rT,,, (field equations)
V,T"" =0, (cons. energy/momentum)

cons. rest mass)

v,u (puu) =3 07 (
p=p(p,€Ye,...), (equation of state)
NepEEE= N e e ) e N ascwell equiations)

fa e g -+ (energy — momentum tensor)
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In non-vacuum space times the truncation error is the only
error that 1s measurable; “SIMULATION”

t's our approximation to “redlity”: iImprovable via microphysics,
magnetic fields, viscosity, radiation transport, ...



[ he two-body problem: Newton vs Einstein

nteracting only gravitationally

n Newtonian gravity solution Is ana
there exist closed orbits (circular/ell
GM
3
d12

P r

ake two objects of mass m1 and Mo

ytic:

btic) with

where M5m1+m2,TET1—T2,d125‘7”‘1—7"2‘.

In Einstein’s gravity no analytic solution! No closed orbits: the
system loses energy/angular momentum via gravitational waves.



Catastrophic events...

Back-of-the-envelope calculation (Newtonian quadrupole
approx.) shows the energy emitted in GWs per unit time Is

=G Mal el )
g eed T = e R C
Near merger the binary is very compact (Rschw,=2GM/c?) and
moving at fraction of speed of light: GR Is Indispensable

R ~ 10 RSchw. <U> =) e

As a result, the GW luminosity Is:

C5

Loonrlg=S <E> ~ 102 erpss ~ 10RCE

This is roughly the combined luminosity of | million galaxies!



The two-body problem in GR

Hanford, Washington (H1) Livingston, Louisiana (L1)
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* HMNS phase can provide strong and clear information on EOS

* BH+torus system may tell us on the central engine of GRBs



Animations: Breu, Radice, LR
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‘merger - HNNS w—p- B + torus”

Quantitative differences are produced by:

- differences induced by the gravitational MASS:
a binary with smaller mass will produce a HMNS further away
from the stability threshold and will collapse at a later time



Broadbrush picture
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‘merger - HNNS w—p- B + torus”

Quantitative differences are produced by:

- differences induced by the gravitational MASS:
a binary with smaller mass will produce a HMNS further away
from the stability threshold and will collapse at a later time

- differences induced by MASS ASYMMETRIES:
tidal disruption before merger; may lead to prompt BH
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Animations: Glacomazzo, Koppitz, LR
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= needed to create a GRB



‘merger g (NS w—)p- BH + torus”
Quantitative differences are produced by:

- differences induced by the gravitational MASS:
a binary with smaller mass will produce a HMNS further away
from the stability threshold and will collapse at a later time

- differences induced by MASS ASYMMETRIES:
tidal disruption before merger; may lead to prompt BH

- differences induced by the EOS:
stiff/soft EOSs will have different compressibility and
deformabllity, imprinting on the GWV signal

- differences induced by MAGNETIC FIELDS:
the angular momentum redistribution via magnetic braking or
MRI can increase/decrease time to collapse; EM counterparts!

- differences induced by RADIATIVE PROCESSES:
radiative losses will alter the equilibrium of the HMNS



How to use gravitational waves
to constrain the EOS




Anatomy of the GW signal
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Anatomy of the GW signal
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Inspiral: well approximated by PN/EOB; tidal effects important



Anatomy of the GW signal
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Merger: highly nonlinear but analytic description possible



Anatomy of the GW signal
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post-merger: quasi-periodic emission of bar-deformed HMNS



Anatomy of the GW signal
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Collapse-ringdown: signal essentially shuts off.



Anatomy of the GW signa
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Anatomy of the GW signal

Inspiral
llllllllllllllllllllllll /I‘\Il o :
L waveform P Wln S
o LA I i
2 e
—0.52— UUUUUUM' |
I :,t,m,ax

t/M



Hints of quasi-universality

Read+, 2013, found rather

38 | “surprising” result: quasi-
v 1 universal behaviour of GW
5 | — g;‘; Takami et al. (2011} frequency at amplitude peak
~_ i i
Sl A e ey Y] Bernuzzit, 2014, Takamit, 2015,
= T o a Bemmictal 2014) 1 LR+2016 confirmed with new
§ : ,' | simulations.
a - | y : - -
S I Quasi-universal behaviour
o ., . S o
= [ in the inspiral implies that
ooNmz AN once fmax 1S Measured, so Is
35_ L1 ilk I|JS|22|0 NI B R R |q | || """ L | T tidal deformabi|it>/’ hence
100 200 T 300 400 I : Q’ M / R
Ea e =
= = tidal deformability or Love number



Anatomy of the GWV signal

merger/post-merger
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5

formation from the

Xtracting In

Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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-xtracting information from the EOS

Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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There are lines! Logically not different from
emission lines from stellar atmospheres




A new approach to constrain the EOS

Oechslin+2007/, Baiotti+2008, Bauswein+ 201 |, 2012, Stergioulas+ 201 |, Hotokezaka+ 2013, Takami
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, LR+2016...
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A new approach to constrain the EOS

Oechslin+2007/, Baiotti+2008, Bauswein+ 201 |, 2012, Stergioulas+ 201 |, Hotokezaka+ 2013, Takami
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, LR+2016...
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Prototypical simulation:
ALF2 EOS, M=1.325Me

y [km]

—5—050 —30 ET0 10 30

- [ km ] Takami, LR



A mechanical toy model

* Consider disk with 2 masses moving
along a shaft and connected via a
spring ~ HMNS with 2 stellar cores

| et disk rotate and mass oscillate
while conserving angular momentum

t [ms]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
P & @ 4 ‘ L LA I g 0 & ® ] L LA [ T ' LB LI T " T |

*|f there Is no friction, system will spin
between: low freq (fi, masses are far = |
apart) and high (f3, masses are close).  |oxusqomzn |

*If friction Is present, system will spin
asymptotically at fo~ (fi+f3)/2.

* analytic model possible of post
merger (see later).




Understanding mode evolution

On a short timescale after the merger, it Is possible to
see the emergence of f, 2, and f3,

Note that It I1s easy to confuse f and fspiral

hy x 10% [50 Mpc]

f [ktiz




Understanding mode evolution

On a long timescale after the merger, only f2 survives

Note that f20 Is present but very weak.
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Some representative PSDs
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f1, f2, and f3 frequencies are robust features of the spectra.

[t's easy confuse fi and fspiral but |a
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er 1s Il defined at times.



Quasl-universal or not!

f| identification of PSDs is
S

) 1 delicate, since created In
| —— Fq. (25) in Takami et al. 2015 @ 1 short time window.
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Quasi-universal or not! [ he case for fa, 20

Correlations with stellar
broperties (Love number) have
heen found also for f, and .0

beak (Takami+ 2015, Bernuzzi+
2015, LR+2016)
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These correlations are weaker but
equally iImportant.
Despite its complexity, a complete
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The role of magnetic fields
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ldeal Magnetohydrodynamics

Most simulations to date make use of ideal MHD:
conductivity Is infinite and magnetic field simply advected.

You can ask some simple questions.

* can B-fields be detected during the inspiral?

e can B-fields be detected in the HMNS!?

* can B-fields grow after BH formation?



Waveforms: comparing against magnetic fields

Compare B/no-B field:

*the evolution in the inspiral Is
different but only for ultra large
B-fields (i.e. B~10'" G). For
realistic fields the difference iIs
not significant.

*the post-merger evolution Is
different for all masses; strong B-
fields delay the collapse to BH

However, mismatch must
1 | computed using detector
M1.62—812_: SenSitiVity

L l L L 1 1
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Can we detect

b

3-flelds In the inspiral?

To quantify the differences and determine whether detectors
will see a difference in the inspiral, we calculate the overlap
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where the scalar product is
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In essence, at these res:
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Influence of B-fields on inspiral
s unlikely to be detected



Typical evolution for a magnetized binary
(hot EOS) M = 1.5 M, By = 10" G
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Animations:, LR, Koppitz
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* at the merger; the
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3-field amplificat

NS create a strong shear layer which coulc

a Kelvin-Helmholtz instability; magnetic field can be amplified
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MHD Instabilities and B-field amplifications

e at the merger, the NS create a strong shear layer which could lead to
a Kelvin-Helmholtz instability; magnetic field can be amplified

* low-res simulations don't show exponential growth (Giacomazzo+201 1)
high-res simulations show increase of ~ 3 orders of mag (Kiuchi+2015)

* sub-grid models suggest B-field grows to 10'® G (Giacomazzo+2014)
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MHD Instabilities and B-field amplifications
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* differentially rotating magnetized fluids develop the MRI
(magnetorotational instability;Velikhov 1959, Chandrasekhar 1960)

* the MRl leads to exponential growth of B-field and to an outward
transfer of angular momentum: responsible for accretion in discs
* overall, consensus MRI can develop in HMNS (Siegel+2013,Kiuchi+2014)

* degree of amplification I1s unknown: 2-3 or 5-6 orders of magnitude!
What about resistivity! (Kiuchi+2015, Obergaulinger+2015)
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LR+ 201 |

Magnetic fields

i\\w ﬂf‘p

Neutron stars
Masses: 1.5 suns
Diameters: 17 miles (27 km)
Separation: 11 miles (18 km)

Simulation begins 7.4 milliseconds 13.8 milliseconds
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‘.‘ \ '[\ ' 7 Jet-like
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rgesv_ ¥ |

These §|mu|at|ons hae-shovv that the merg‘éfuofa
magnetised binary has all the basic features behind SGRBS

J/M? = 0.83 Mio, = 0.063Mp  tacer ~ Myor /M ~03s




Resistive Magnetohydrodynamics
Dionysopoulou, Alic, LR (2015)

*|deal MHD Is a good approximation in the inspiral, but not
after the merger; match to electro-vacuum not possible.

*Main difference In resistive regime is the current, which is
dictated by Ohm’s law but microphysics 1s poorly known.

* We know conductivity 0 Is a tensor and proportional to
density and Inversely proportional to temperature.

* A simple prescription with scalar (isotropic) conductivity:
J' = qv* + WolE" + Eijk”vak = (UkEk)Ui] :

o — 00 idea-MHD (IMHD)

040 resistive-MHD (RMHD) 0 = f(P; Prain)

o — 0 electrovacuum phenomenological prescription
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NOTE: the
magnetic jet
structure IS
not an outflow
t's a plasma-
confining
structure.

In IMHD the
magnetic jet
structure Is
present but
less regular.

15 8

t = 19.8061 ms
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t=21.311ms

NOTE:the
magnetic jet
structure IS
not an outflow.
t's a plasma-
confining
structure.

In RMHD the
magnetic jet
structure 1Is
bresent from
the scale of the

norizon (res.:
s dms




t = 18.537ms
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Results from other groups (IMHD only)

With due differences, other groups confirm this picture.

t/M = 1691

Kiuchi+ 2014
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Dynamically captured binaries
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High-eccentricity mergers can occur in dense stellar
environments, e.g., globular clusters (GCs).

About 0% of all SGRBs show significant offsets from
the bulge of their host galaxies.

Offsets could be due to kicks imparted to the binaries,
or to binaries being in GCs around host galaxy.
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Mass ejection
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Distributions
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Nucleosynthesis
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Conclusions

*Modelling of binary NSs in full GR is mature: GWs from the
inspiral can be computed with precision of binary BHs

*Spectra of post-merger shows clear peaks: cf lines for stellar
atmospheres. Some peaks are “quasi-universal”

*If observed, post-merger signal will set tight constraints on EOS

*Magnetic fields unlikely to be detected during the inspiral but
important after the merger: instabilities and EM counterparts

* Eccentric binaries alternative to quasi-circular ones. GW signal
s more complex, but ejected matter is much larger (factor
|0-100) and "high-A" nucleosynthesis matches the observations.



