Σ hyperons reconstruction by the missing mass method

Ivan Kisel^{1,2,3}, <u>Pavel Kisel</u>^{1,3,4}, Peter Senger³, Iouri Vassiliev³, Maksym Zyzak^{1,3} (for the CBM collaboration)

1 – Goethe-Universität Frankfurt, Frankfurt am Main, Germany
 2 – Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
 3 – GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
 4 – Joint Institute for Nuclear Research, Dubna, Russia

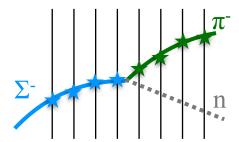
DPG Spring Meeting, Darmstadt 15.03.2016

Σ^+ and Σ^-

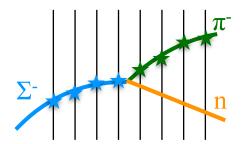
Σ^+ and Σ^- physics:

- completes the picture of strangeness production: abundant particles, carry out large fraction of strange quarks;
- possible to compare yields of Σ and Σ^* production, that can be used in study of the QCD phase diagram;
- reconstruction of resonances decaying into Σ;
- reconstruction of hypothetic particles, like H-dibaryon.

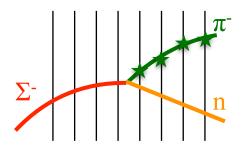
Main decay modes:

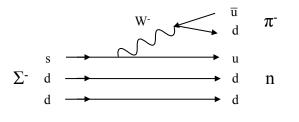

$$\begin{array}{lll} \Sigma^{+} \rightarrow p\pi^{0} & \overline{\Sigma}^{+} \rightarrow \overline{p}\pi^{0} & BR = 51.6\% \\ \Sigma^{+} \rightarrow n\pi^{+} & \overline{\Sigma}^{+} \rightarrow \overline{n}\pi^{-} & BR = 48.3\% \\ \Sigma^{-} \rightarrow n\pi^{-} & \overline{\Sigma}^{-} \rightarrow \overline{n}\pi^{-} & BR = 99.8\% \end{array}$$

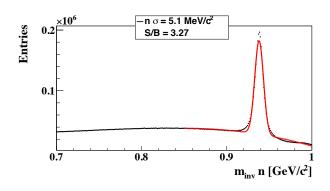
The main challenge: at least one neutral daughter in a decay channel

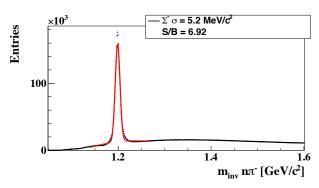

Missing Mass Method

- Σ^+ and Σ^- have only channels with at least one neutral daughter.
- A lifetime is sufficient to be registered by the tracking system: $c\tau = 2.4$ cm for Σ^+ and $c\tau = 4.4$ cm for Σ^- .
- Can not to be identified by the PID detectors.
- Identification is possible by the decay topology:

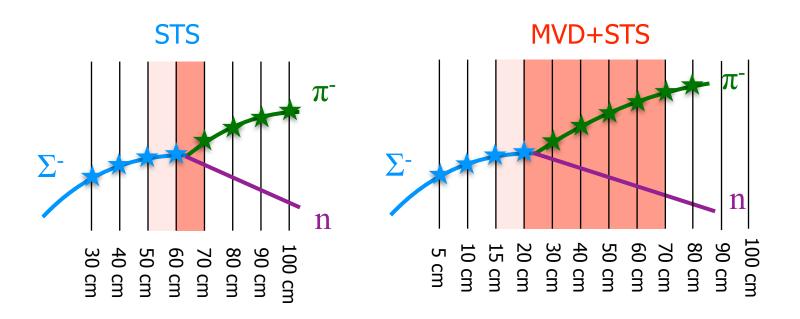

Find tracks of Σ and its charged daughter in STS and MVD

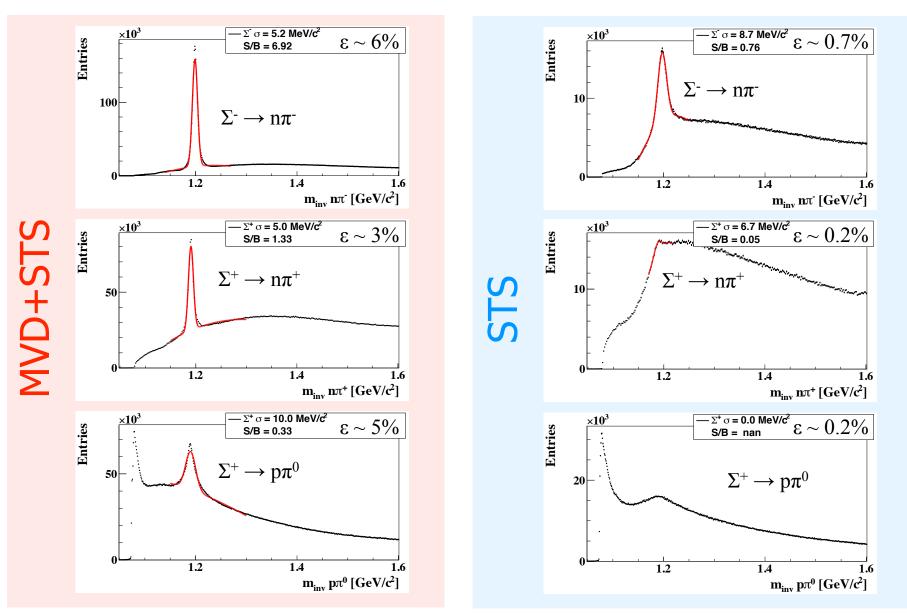



Reconstruct a neutral daughter from the mother and the charged daughter

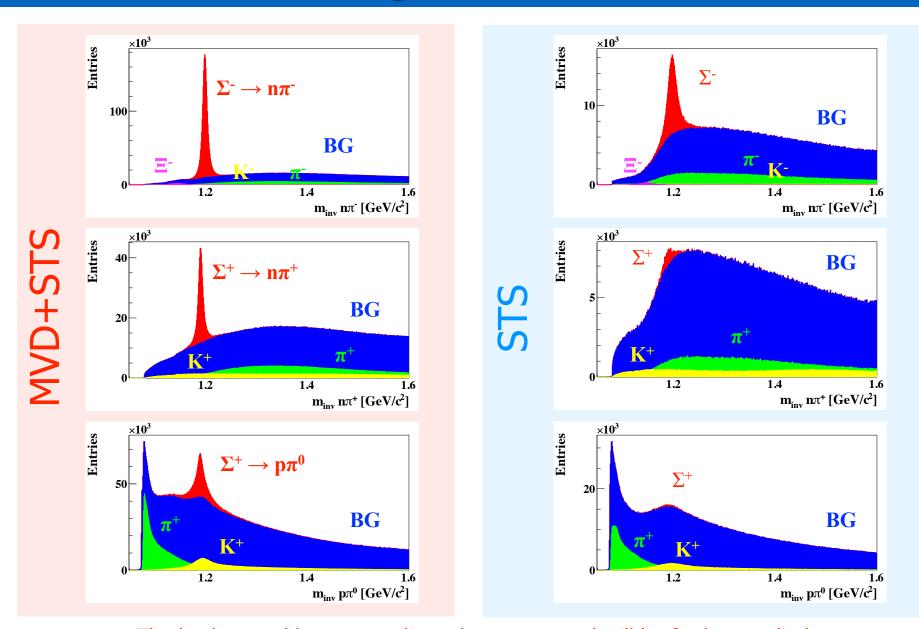


Reconstruct Σ mass spectrum from the charged and obtained neutral daughters





Acceptance of STS and MVD+STS


- The acceptance of STS for Σ^+ and Σ^- is limited by 50 < Z < 70 cm:
 - the primary Σ track can have 3 or 4 hits;
 - the π^- daughter track should have at least 4 hits.
- MVD allows to increase the acceptance significantly to 15 < Z < 70 cm.

Σ^+ and Σ^- reconstruction with STS and MVD

5M central UrQMD AuAu events at 10 AGeV, no PID

Background structure

The background has a complicated structure and will be further studied

Other applications of the method

The proposed method can be applied for reconstruction of multi-strange hyperons:

$\Xi^{\scriptscriptstyle{-}} \to \Lambda \pi^{\scriptscriptstyle{-}}$	with Λ	\rightarrow n π^0	BR = 35.6%
$\overline{\Xi}^{\scriptscriptstyle +} \longrightarrow \overline{\Lambda} \pi^{\scriptscriptstyle +}$	with $\bar{\Lambda}$	$ ightarrow \overline{n}\pi^0$	BR = 35.6%
$\Omega^{-} \rightarrow \Lambda K^{-}$	with Λ	$ ightarrow$ $n\pi^0$	BR = 24.3%
$\overline{\Omega}^+ \! \to \overline{\Lambda} K^+$	with $\bar{\Lambda}$	$ ightarrow \overline{n}\pi^0$	BR = 24.3%
$\Omega^{\text{-}} o \Xi^0 \pi^{\text{-}}$			BR = 23.6%
$\bar{\Omega}^+ \rightarrow \bar{\Xi}^0 \pi^+$			BR = 23.6%

Kaons and Pions:

$\pi^+ \to \mu^+ \nu_\mu$	BR = 99.99%
$\pi^{\scriptscriptstyle{-}} \rightarrow \mu^{\scriptscriptstyle{-}} \overline{\nu}_{\mu}$	BR = 99.99%
$K^+ \rightarrow \mu^+ \nu_\mu$	BR = 63.6%
$K^{\text{-}} \rightarrow \mu^{\text{-}} \overline{\nu}_{\mu}$	BR = 63.6%
$K^+ \rightarrow \pi^+ \pi^0$	BR = 20.7%
$K^- \rightarrow \pi^- \pi^0$	BR = 20.7%

These decays are being added to the KF Particle Finder (HK 25.5)

Reconstruction of these decays allows to:

- increase reconstruction efficiency for multi-strange hyperons;
- investigate systematic errors;
- study the background.

Summary and Plans

Summary

- The method for reconstruction of Σ^+ and Σ^- has been developed, that allows to complete the picture of strangeness production.
- The missing mass method provides a capability to reconstruct Σ^+ and Σ^- with high efficiencies and S/B ratios.
- The method can be applied for reconstruction of other decays including multistrange hyperons and hypernuclei.

Plans

- Implement all decays in KF Particle Finder.
- Add PID information.