## Radiation tolerance of microstrip sensors for the CBM Silicon Tracking System

<u>Ie. Momot</u> <sup>1,3</sup> H. Malygina <sup>1,3</sup> J. Heuser <sup>2</sup> for CBM collaboration

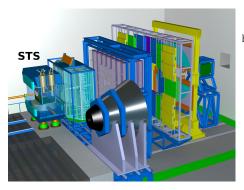
<sup>1</sup>Goethe University, Frankfurt, Germany

<sup>2</sup>GSI, Darmstadt, Germany

<sup>3</sup>KINR, Kyiv, Ukraine

DPG 2016 Darmstadt 15.03.2016










### The CBM experiment

# [Fri, 14:00, HK 66.1 D.Emschermann]



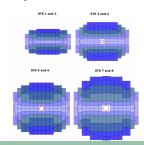
#### Goal:

To study the QCD phase diagram at high net baryon densities and moderate temperatures

SIS100 collision energies 2÷11 A GeV

#### Physics observables:

- Differential cross-sections
- Rare diagnostic probes
  - Strange mesons
  - Light vector mesons  $(\rho, \, \varpi, \, \varphi)$


### STS layout

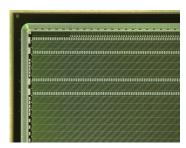


- Momentum resolution  $\Delta p/p \sim 1\%$
- Hit spatial resolution  $\sim 25~\mu\mathrm{m}$
- Material budget  $\sim 1\% X_0/\text{station}$

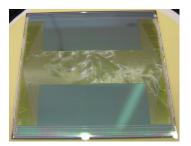
## [Mon, 16:30, HK 15.1, A.Lymanets]

- 8 tracking stations
- double-sided sensors, p-n-n structure
- sensor sizes  $6 \times 2$ ,  $6 \times 4$ ,  $6 \times 6$ ,  $6 \times 12$  cm<sup>2</sup>
- 1024 strips per side (58  $\mu$ m pitch)
- stereo angle front-back sides 7.5 deg
- radiation tolerance up to  $1 \times 10^{14}$  1 MeV  $n_{eq}/cm^2$
- S/N >10 for the hit reconstruction efficiency  $\sim 98\%$




#### Motivation

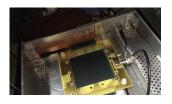
Double metalization (DM) each strip is connected to its partner on the opposite end with a second metal layer


Interstrip cables on the top of the sensor (SMwC) routing lines are made by the microcables on the top of the sensor

#### The main aim of the studies:

- I Compare sensors from two vendors
- II Choose the appropriate technology for the routing lines



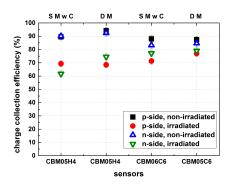

double metal sensor (DM)



single metal with cable (SMwC)

### Charge collection measurements

- 4 sensors were selected for charge collection test before and after irradiation (KIT,  $2\times10^{14}$  1 MeV  $n_{eq}/{\rm cm}^2$  twice the maximum neutron fluence expected in the CBM )
- measurements in light tight metal box
- air was dried by N<sub>2</sub> flow
- measurements inside fridge (temperature and humidity monitored)
- after irradiation the measurement temperature: -10 (±2) °C



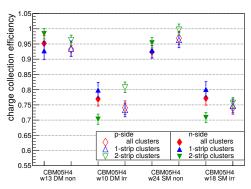

| > Si | > Strontium Source    |  |  |
|------|-----------------------|--|--|
|      |                       |  |  |
| -    | → Silicon Sensor      |  |  |
|      | > 1mm Aluminum        |  |  |
|      | → Si-pad for trigger  |  |  |
|      | → Metal Box in fridge |  |  |

| $_{ m name}$                      | size           | $_{ m thickness}$ | inter-           |
|-----------------------------------|----------------|-------------------|------------------|
| CBM0-                             | $cm \times cm$ | $\mu\mathrm{m}$   | connection       |
| 5H4-W18                           | $6 \times 4$   | 327               | SMwC             |
| 5 H4 - W10                        | $6 \times 4$   | 331               | $_{\rm DM}$      |
| 6C6-W14                           | $6 \times 6$   | 293               | SMwC             |
| $5\mathrm{C}6\text{-}\mathrm{W}6$ | $6 \times 6$   | 291               | $_{\mathrm{DM}}$ |
|                                   |                |                   |                  |

5 or 6 – prototype generation, H = Hamamatsu, C = CiS – manufacturer, 4 or 6 – sensor height/strip length in cm, W – wafer number

# Charge collection with radioactive source <sup>90</sup>Sr



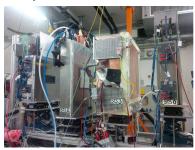

100% of collected charge was estimated for the given thickness.

 CiS & Hamamatsu sensors: difference of charge collection efficiency is negligible within error bars

• DM & SMwC: sensors from the same vendor shows the same result

ullet after irradiation: charge collection efficiency drop about 20% at fluence  $2\times 10^{14}~\mathrm{1\,MeV}~\mathrm{n}_{eq}/\mathrm{cm}^2$ 

# Charge collection with proton beam 2.4 GeV @COSY, Julich



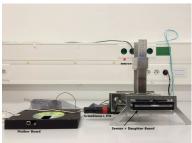

100% collected charge was calculated taking into account interstrip and coupling capacitance.

After irradiation signal dropped down by  $\sim 20~\%$ 

#### STS test system:

- STS0, STS1: reference stations
- STS2: module: sensor + 20 cm microcable
- STS3: irradiated sensors operated at -8° C




# Charge collection studies with different read-out bonding configurations

- At the outer part of detector where occupancy of particles is low → possibility to cut signal with threshold
- $\bullet$  To get signal higher  $\to$  to read not every strip, but from two or every second strip
- First approach: only perpendicular tracks



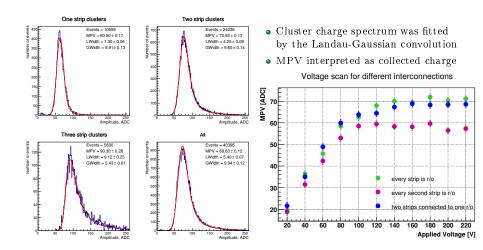




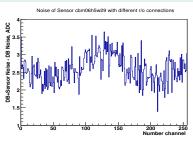


## Charge collection studies with different read-out bonding configurations

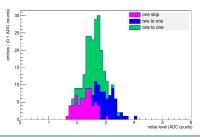
To reduce number of r/o channels in outer aperture of STS detector three different configurations of connection were tested:


- each strip corresponds to one r/o channel
- · every second strip is read-out
- two strips connected to one r/o channel




#### Advantages:

- \* possible S/N improvement
- \* less read-out electronics


# Charge collection studies with different read-out bonding configurations



#### Noise



Edge&noisy channels were removed from analysis





I case  $2.58 \pm 0.02 \text{ ADC}$  $S/N \approx 26$ 



III case



#### Conclusion

- \* The prototype sensors from two vendors, in two technological configurations, show a reduction of charge collection by 15% to 25% after irradiation to twice the maximum neutron fluence expected in the CBM experiment.
- \* Double Metal and Single Metal with Cable sensors shows similar charge collection result.
- \* Three types of connection schemes with perpendicular penetrated particles were analysed:
  - For each group S/N > 20;
  - Cases when two strips and every strip connected to one read-out has shown the same charge collection;
  - $\bullet$  In case of every second strip is read-out collected charge is  $\approx 15\%$  less;
  - · Study will be continued with inclined beam.
- \* New series of sensors are under preparation to forthcoming irradiation studies.

### Thank you for attention!