Offline Event-Building with CBM-TRD Prototype FLES Data (CERN-SPS Beamtest 2015)

DPG-Frühjahrstagung 2016
2016, March 14th

Philipp Kähler
WWU Münster, Germany
p.kaehler@uni-muenster.de
The CBM-TRD in FAIR

- In construction: SIS100 (magnetic rigidity of 100 Tm)
- Compressed Baryonic Matter as one of the four pillars of FAIR
- Upgradeable: SIS300

<table>
<thead>
<tr>
<th>beam</th>
<th>Z</th>
<th>A</th>
<th>E (AGeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Ca</td>
<td>20</td>
<td>40</td>
<td>14</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58</td>
<td>13.6</td>
</tr>
<tr>
<td>In</td>
<td>49</td>
<td>115</td>
<td>11.9</td>
</tr>
<tr>
<td>Au</td>
<td>79</td>
<td>197</td>
<td>11</td>
</tr>
<tr>
<td>U</td>
<td>92</td>
<td>238</td>
<td>10.7</td>
</tr>
</tbody>
</table>

SIS100 energies
The CBM-TRD in FAIR

- In construction: SIS100 (magnetic rigidity of 100 Tm)
- Compressed Baryonic Matter as one of the four pillars of FAIR
- Upgradeable: SIS300

<table>
<thead>
<tr>
<th>beam</th>
<th>Z</th>
<th>A</th>
<th>E (AGeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Ca</td>
<td>20</td>
<td>40</td>
<td>14</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58</td>
<td>13.6</td>
</tr>
<tr>
<td>In</td>
<td>49</td>
<td>115</td>
<td>11.9</td>
</tr>
<tr>
<td>Au</td>
<td>79</td>
<td>197</td>
<td>11</td>
</tr>
<tr>
<td>U</td>
<td>92</td>
<td>238</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Hadronic freeze-out

J. Randrup & J. Cleymans
The CBM-TRD in FAIR

- **MVD+STS**
 Micro-Vertex Detector + Silicon Tracking Station
 magnetic field

- **MUCH or RICH**
 MuonChambers/ Ring imaging Cherenkov Detector

- **TRD**
 Transition Radiation Detector

- **TOF**
 Time Of Flight

- **PSD**
 Projectile Spectator Detector
The TRD in CBM

- TRD in total:
 4 layers with 2 MWPCChamber sizes (central regions: higher rates)
 - Plus *radiator*: irregular type, foam (polyethylene)
CBM-TRD Readout: SPADIC

- Readout of the cathode pads with *Self-triggered Pulse Amplification and Digitization ASIC* (SPADIC)
- Charge-sensitive amplifier with 32 channels
- Free-streaming
- Digitising 32 samples, 40 ns each
- Forced neighbour readout (sensitivity despite high trigger thresholds)
- Digital filter implemented: time shortening by tail cancellation
- Ongoing development
- **Front End Board (FEB):** SPADIC
- **SysCore** boards streaming hit messages of 6 SPADICs to PC port
- **First Level Event Selector (FLES)** processes messages into data containers

Scheme from Dirk Hutter, 23rd CBM Coll. meeting
• Principle allows various microslice sources
• Ringbuffers minimize memory consumption, maximise throughput

Towards event-building:
• The SPADIC-unpacker extracts hit messages from the timeslices
• Full-time calculation currently in validation
• Let SPADIC A and SPADIC B be projective behind target
• Hits from one event to be correlated
Starts of Data Analysis: Spatial Correlation

- Let SPADIC A and SPADIC B be projective behind target
- Hits from one event to be correlated
Starts of Data Analysis: Spatial Correlation

- Let SPADIC A and SPADIC B be projective behind target
- Hits from one event to be correlated
- Needed: Routines for message loss, e.g. caused by high-rate environment
Starts of Data Analysis:
Time Correlation

- Let SPADIC A and SPADIC B be projective behind target
- Hits from one event to be correlated
- Needed: Routines for message loss, e.g. caused by high-rate environment
- Needed: Routines for association in time
Starts of Data Analysis: SPS 2015 Testbeam

• Testbeam at the CERN-SPS, Nov. 2015
• Pb 30 AGeV beam on Pb target
• SPADICv1.0 readout on 3 diff. prototypes, 2 of them in line
• Interaction rates up to 10^5 Hz

Measurements:
• SPADIC read-out
• HV-currents recorded with 2.5 Hz

Photo: David Emschermann
Starts of Data Analysis: Timing Validation

- Work in progress: Validation of time reconstruction

![Graphs showing real time vs. processing (recording) time]

- time is counted in the SPADIC as:
 - timestamp (12 bit, unsigned) with clock derived from outer frequency
 - timestamp periods are “epochs”
Starts of Data Analysis: Timing Validation

- Work in progress: Validation of time reconstruction

- time is counted in the SPADIC as:
 - timestamp (12 bit, unsigned) with clock derived from outer frequency
 - timestamp periods are “epochs”

real time vs. processing (recording) time
• Work in progress: Correlations between 2 detectors

Thanks to Philipp Munkes for works on an efficient clusterizer
Outlook and Summary

• Next local steps:
 – Proceed in spatial and time correlation
 – Optimise SPADIC settings for high rate capabilities
 – Systematically analyse HV behaviour

• And more global:
 – Production of 4 large-sized prototypes
 – Release + test of the SPADICv1.1 chip

→ Fully equipped beamtime measurements with large acceptance (improved correlation)
The TRD in CBM

- **TRD in principle:**
 - Multi-wire proportional chamber-based
 - Transition radiation emitted at ε-transitions
 - Intensity of TR is $\sim \gamma$ (idealised)
 - e/π-sep. e.g. by likelihood
- **Regular and irregular radiators:** foil, foam, fibers

Transition radiation at one ε-interface:

$$
\left(\frac{d^2 N}{d \omega d \theta} \right)_{\text{interface}} = \frac{\alpha}{\pi} \cdot \frac{\vartheta}{\gamma^2 + \frac{9}{\omega_P,1^2/\omega^3} + \frac{9}{\omega_P,2^2/\omega^3}}
$$

- ω: photon frequency
- ω_P,i: plasma frequency of material i
- α: fine structure constant
- ϑ: emission wrt. particle motion
- γ: Lorentz factor
The TRD in CBM

Development in progress

- High-voltage wire geometries in comparison: different prototypes
- Proportional chamber: rate limits

→ short ion drifts (3.5+5 mm)

- Special conditions: flexible cathode (entrance window)

Favoured Anode+Drift HV geometry

Example: Field distortion by entrance window stretching (Garfield sim.)

from F. Sauli, CERN lectures 1977
The CBM-TRD in FAIR

• Physics objectives
 – Intermediate mass di-leptons ... continuum from thermal sources (1...3 GeV)
 – Fragments ... hyper- and anti-nuclei
 – Quarkonia ... are probes for deconfined matter
 – Low mass vector mesons ... medium-modified spectra
 – Direct Photons ... inverse slope fits as thermometer

• Design considerations
 – Pion rejection capability ... pion suppression up to 50 and 10^4 with RICH
 – (Charged) Particle identification ... dE/dx resolution below 30%
 – Tracking capabilities ... track resolution below 300 µm (pad granularity)
 – High interaction rates ... optimised: 5×10^6 Hz & realistic multiplicities
 – Tracking of muons ... high track matching with the MUCH
The CBM-TRD in FAIR

Physics objectives
- Intermediate mass di-leptons
- Fragments
- Quarkonia
- Low mass vector mesons
- Direct Photons

Design considerations
- Pion rejection capability
- (Charged) Particle identification
- Tracking capabilities
- High interaction rates
- Tracking of muons

\[
\begin{align*}
^6\text{He} &\rightarrow ^5\text{He} + p + \pi^- \\
^5\text{He} &\rightarrow ^4\text{He} + p + \pi^- \\
^3\text{He} &\rightarrow d + p + \pi^-
\end{align*}
\]