# QA tests of the CBM Silicon Tracking System sensors with an infrared laser

### Maksym Teklishyn for the CBM Collaboration

FAIR, Darmstadt; KINR, Kyiv

March 14, 2016

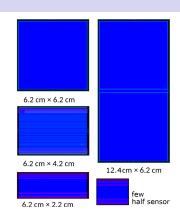




### Introduction

### Silicon Tracker System design:

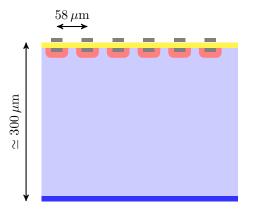
- Detector acceptance
  - rapidities from centre-of-mass to beampipe
  - angular coverage  $2.5^{\circ} < \Theta < 25.0^{\circ}$
- Low mass large area detector
  - readout electronics away from the acceptance
  - double sided 300 μm thick silicon sensors (8 stations)
  - material budget  $\simeq 1\% X_0/\text{station}$
  - low scattering, high momentum resolution
  - track matching in MVD and RICH/MUCH
- To fulfil requirements above well understanding of our sensors is needed
- See A. Lymanets, Mo HK15 talk for more details




- $\Delta p/p \simeq 1.5\%$
- up to  $\simeq 25\,\mu\mathrm{m}$  single hit resolution

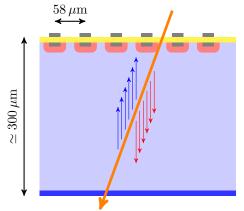
# Microstrip sensor prototypes

- Double-sided n-type silicon sensors
  - ▶  $58 \, \mu \text{m}$  pitch
  - ▶ 1024 strips per sensor
  - ► AC-coupling, aluminium strips
  - 7.5° stereo angle for p-side (suppression of the ghost track rate)
- Sensor inside a sandwich PCB frame:

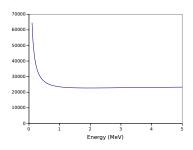





- radiation tolerance up to  $10^{14}\,\mathrm{n_{eg}/cm^2}$
- signal transfer to r/o electronics by microcable (polyimide  $10~\mu\mathrm{m}$ , aluminium  $14~\mu\mathrm{m}$  thick)

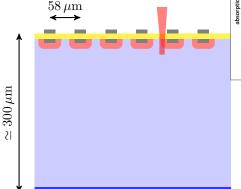

interaction with MIP

- MIP (Minimum Ionising Particle) penetrates silicon sensor
- Deposited charge drifts along  $\vec{E}$  field to the electrodes




#### interaction with MIP

- MIP (Minimum Ionising Particle) penetrates silicon sensor
- Deposited charge drifts along  $\vec{E}$  field to the electrodes




- $\Delta E = 3.79 \pm 0.01 \, \mathrm{eV}$  per one e-h pair got from
  - C. Bussolati et al. Phys. Rev. 136, A1756]
- ullet  $\Delta_p$  is found for 300  $\mu\mathrm{m}$  silicon
- $\Delta_p \simeq 23 \times 10^3$
- this value depends on many input parameters

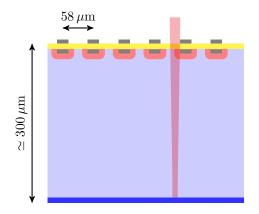


interaction with (infra)red laser

- (Infra)red laser can be used to mimic MIPs
- Deposited charge drifts along  $\vec{E}$  field to the electrodes






Silicon absorption depth

[Green MA, Keevers MJ. 1995;3:189 - 192.]:

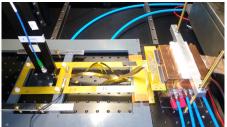
- red light (660 nm)
  4 μm
- infrared light (1060 nm)  $901 \mu m$

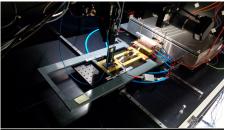
interaction with (infra)red laser

- (Infra)red laser can be used to mimic MIPs
- Deposited charge drifts along  $\vec{E}$  field to the electrodes



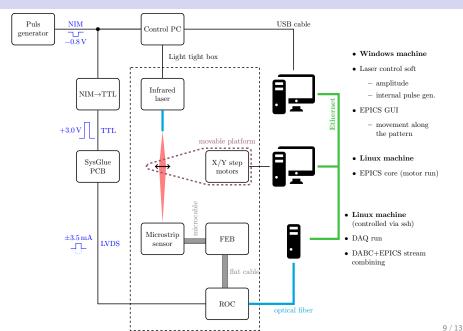
#### Laser:


- ▶ infrared 1060 nm
- triggered by external puls generator


#### Focuser:

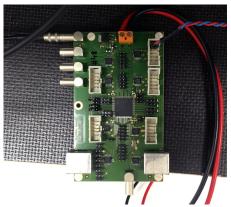
- focusing distance  $10 \pm 1 \, \mathrm{mm}$
- beam size  $12 \pm 2 \, \mu \mathrm{m}$
- Step motor
  - controlled by EPICS
  - positioning precision  $\simeq 1\,\mu\mathrm{m}$
- Data acquisition
  - ► DABC over optical channel (ver. 2012)
  - ► GO4 online monitoring

### Laser test stand


- Constructed for studies of the sensor properties with a laser
- Sensor + readout + laser in a light tight box
- Readout controllers additionally shielded

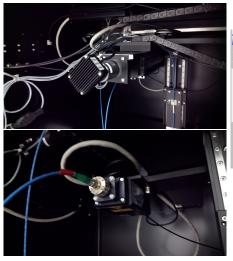




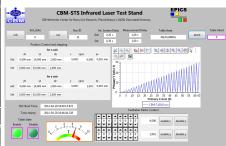



### Laser test stand scheme



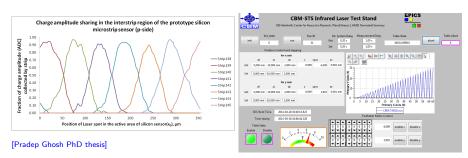

# External triggering system






- **1** NIM signal is generated  $(-0.8 \,\mathrm{V})$
- 2 signal to Laser control PC
- $\odot$  converted to TTL signal  $(+3\,\mathrm{V})$

# Positioning system




Vertiacal positioning is manual



- Automated X/Y positioning
- $\bullet$  Accuracy up to  $1\,\mu\mathrm{m}$
- Scanning along predefined pattern with EPICs based software

# Online monitor and data processing



- Charge sharing between neighbouring strips
- Focusing is complicated with manual z-positioning
- External trigger forces to r/o all 128 channels per pulse

### Conclusions and outlook

- Infrared laser is a good tool to test silicon sensor prototypes
- Red laser may be used for cross-check/surface effect studies
- Laser test stand is ready for operation
- Application of the external triggering allows go deep below the noise

#### Things we still missing:

- Motorised z-positioning for the focusing purposes
- Online feed-back from data stream for the pattern correction:
  - misalignment correction
  - automatic focusing
- Remote control for hardware components: bias voltage, pulse generator...
- Automatise the procedure for the QA during the mass production

