Parallel 4-Dimensional Cellular Automaton Track Finder for the CBM Experiment

Akishina V., Kisel I.

Goethe-Universität Frankfurt, Frankfurt am Main, Germany Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

DPG Spring Meeting, Darmstadt 17.03.2016

Reconstruction Challenge in CBM

- Interaction rate up to 10 MHz
- free-streaming data
- self-triggered front-end electronics
- no hardware trigger

- Time-slice reconstruction rather than event-by-event
- Time-based tracking: 4D (x, y, z, t)

Events overlap on hit level

Correct procedure of event building from time-slices is crucial for right physics interpretation

First Level Event Selection Package (FLES)

Cellular Automaton (CA) Track Finder

Cellular Automaton:

- · local w.r.t. data
- intrinsically parallel
- simple
- very fast

Perfect for many-core CPU/GPU!

Cellular Automaton:

- 1. Build short track segments triplets.
- 2. Mark possible neighbours while building triplets
- 3. Connect according to the track model, estimate a possible position on a track.
- 3. Tree structures appear, collect segments into track candidates.
- 4. Select the best track candidates.

Time-based CA Track Finder

How to use time information in tracking?

- Triplets are build from the hits with the same time measurement within 3 σ of detector precision
- Fast access to the hits is provided by time-based structure: hits are sorted by time and space coordinates and stored into the time-based grid

Hits time measurement have to be the same within detector precision to build a triplet $t_{hit1} \approx t_{hit2} \approx t_{hit3}$ $t_{hit1} \approx t_{hit2} \approx t_{hit3}$

4D CA Track Finder Scalability

Parallel implementation with OpenMP and Pthreads

ı	T. 1 . 1	1 1 1	0.4
	Inta	i time	= 84 ms

Algorithm Step	% of total execution time	
Initialisation	8%	
Triplets construction	64%	
Tracks construction	15%	
Final stage	13%	

4D Track Finder in CBMroot Framework

Efficiency, %	3D	4D	CBMROOT
All tracks	92.1	92.2	91.3
Primary high-p	97.9	97.9	99.1
Primary low-p	93.6	93.5	93.6
Secondary high-p	92.0	92.0	88.9
Secondary low-p	65.7	65.9	56.8
Clone level	2.8	3.1	3.7
Ghost level	4.9	4.2	1.9
Time/event/core	11.7 ms	13.6 ms	17.3 ms

CBMroot revision 8357 (Nov 2014)

3D, 4D: AuAu 25 AGeV mbias events at 10MHz CBMROOT: AuAu 10 AGeV mbias events at 10MHz

Time-based Track Reconstruction

Reconstructed tracks are clearly clustered in groups representing original events 8

Event Building at IR = 10 MHz

Reconstructed tracks are grouped in events using histogramming:

- all tracks are filled in a time histogram with bin width of 1 ns
- neighbouring not empty bins are called an event
- gap of a 4 empty bins is a sign for event end

- 70 reco events are reconstructed one-to-one, 7 reco events are merged together.
- Primary tracks can be separated using primary vertex information.
- Search of only one primary vertex per event using KF Particle Finder package is currently implemented.
- Multi-vertex reconstruction is in progress.

Summary

- Event building is a necessary part of FLES package
- Time-based 4D track finder allows to reconstruct time-slices with speed and efficiency comparable to event-based approach
- 4D track finder is parallel with speed-up 10.1 out of 13 theoretically achievable within the Intel Xeon E7-4860 CPU
- A first version of event building was implemented based on the 4D tracking.

Future Plans

- Multiple primary vertices analysis
- Physics analysis