Design of a control and monitoring system for the mirror alignment of the CBM RICH detector

DPG 2016 Darmstadt

Jordan Bendarouach

CBM RICH – JLU Gießen – 14th-18th March
Introduction

- CBM at FAIR: explore the QCD phase diagram in the region of high baryon density with A+A collisions
- Energy range (Au-Au) from 2 to 11 AGeV beam energy @SIS100 (up to 35 AGeV @SIS300)
- EM probes
 - In low-mass region
 Photons: early temperatures of the fireball
 Low mass vector mesons: hadron dynamics
 - Intermediate-mass region
 Slope: indicates thermal radiation of the fireball
 Also hints for a quarkyonic phase?
 - High-mass region (SIS 300)
 J/Ψ: investigation of the charm quark propagation
- Identify electrons with RICH detector
Introduction

- CBM: high ring density environment & RICH will be moved
- In case of misalignment:
 - Efficiency losses in ring reconstruction: ring splitting, ring distortion, double rings, ring-track mismatches
 - Misidentification due to distorted ring parameters
- Perfectly aligned and stable mirror system is required for accurate and highly efficient ring reconstruction
- Development of an alignment correction cycle
I. Qualitative control of mirror misalignments
- CLAM method
Impact on ring parameters:
- A&B axes, B/A
- dR
- Radius

II. Quantitative determination of mirror misalignments
- Using data: HERA-b
- Hardware: CLAM

III. Correction of misalignments in data
- Impact of misalignment
- Comparison with and without corrections

In case of misalignment, lines appear broken and the targets are now displaced, with regard to the external ones.
CLAM principle*

- Qualitative control measurement
 - Grid of retro-reflective stripes
 - Illuminate grid with LEDs
 - Record grid reflection through the mirrors
 - Perfect grid → alignment
 - Broken lines → misalignment
- Quantitative position measurement
 - Target dots on grid crossings
 - Target dots on external frame

CLAM principle

- Qualitative control measurement
 - Grid of retro-reflective stripes
 - Illuminate grid with LEDs
 - Record grid reflection through the mirrors
 - Perfect grid → alignment
 - Broken lines → misalignment
- Quantitative position measurement
 - Target dots on grid crossings
 - Target dots on external frame
Prototype set-up and equipment

- Test setup in RICH prototype for beamtest at CERN Nov 2014

Four-mirror system remotely controlled

Radiator: CO$_2$, 1.7 m

CLAM camera surrounded by 3 LEDs

Retro-reflective grid & Target dots at entrance

40×40 cm2
Qualitative misalignment study

- Mirror system viewed by the CLAM camera and reconstructed rings
 - Left: right after the reference alignment
Qualitative misalignment study

- Mirror system viewed by the CLAM camera and reconstructed rings
 - Left: right after the reference alignment
 - Right: lower left mirror rotated by 4 mrad Backwards around Y axis

Data have been recorded and a detailed analysis on the impact of misalignment on ring parameters has been conducted.
Principle of the correction with data*

- Fitted ring center C' and extrapolated track hit C
- Calculation of Cerenkov distances θ_{ch} and angles Φ_{ch}
- Sinusoidal behaviour: $\theta_{ch} = \theta_0 + \Delta \Phi \cos(\Phi_{ch}) + \Delta \lambda \sin(\Phi_{ch})$

\[\text{Fitted circle} \]
\[\text{Photon Hits} \]
\[\text{PMT plane} \]
Principle of the correction with data

- Fitted ring center C' and extrapolated track hit C
- Calculation of Cerenkov distances θ_{ch} and angles Φ_{ch}
- Sinusoidal behaviour: $\theta_{ch} = \theta_0 + \Delta \Phi \ast \cos(\Phi_{ch}) + \Delta \lambda \ast \sin(\Phi_{ch})$
Quantitative measurement

- Misalignment of 5 mrad induced around X axis
- Fitted parameters:
 - $x_{\text{misalignment}} \equiv \arctan \left(\frac{\Delta \Phi}{\text{Focal length}} \right)$
 - $y_{\text{misalignment}} \equiv \arctan \left(\frac{\Delta \lambda}{\text{Focal length}} \right)$
 ✓ 0.287 mrad in X
 ✓ 5.240 mrad in Y

- Minimum detectable misalignment: 0.1 mrad
- Maximum detectable misalignment: 12 mrad
Correction routine

- Reconstruction sequence:
 - Simulation with an artificially misaligned geometry
 - Extraction of misalignment info using the presented method
 - Run correction routine, for three different cases:
 - Without misalignment corrections
 - With corrections included
 - Using ideal corrections
- First step: work with rings located inside mirror (no edge effects are taken into account)
Correction routine

- Several rotations around X axis of the mirror tile:
 Black: 0 mrad; red: 2 mrad; green: 5 mrad; blue: 10 mrad rotations
Correction routine

- Back to the 5 mrad misalignment example:
 Red: uncorrected geometry ; Green: corrected geometry ; Blue: ideal correction
Summary

- Qualitative determination of misalignments using CLAM
 - Broken lines
 - Impact on rings
- Quantitative determination of misalignment and correction
 - Performances of the technique
 - Presentation of a first correction cycle
- Next steps:
 - Include and compare reconstruction and track-ring matching efficiencies without and with corrections
 - Study method for rings reflected on edges of mirrors
- Next: apply photogrammetry with CLAM algorithm to quantify misalignment and compare with results from shown technique
Thank you for your attention!
Backups
Qualitative misalignment study

- Rotation of 1, 2 and 4 mrad backwards, around Y axis. Foreseen impact on rings:
- Comparison

B axis distribution for reference data set

B axis distribution for 1 mrad misalignment around RotY axis

4 mrad displacement: Apply B axis cut to enhance distorted rings sample, as it turns out the finger scintillator had not properly selected the events

Limit at 4.25
More results

- Systematic analysis
 - Minimum detectable misalignment: 0.1 mrad
 - Maximum detectable misalignment: 12 mrad
- Misalignment of 0.3 deg on X axis and 0.5 deg on Y axis
 - $4.88 \text{ mrad} \equiv 0.28^\circ \text{ in X}$
 - $9.02 \text{ mrad} \equiv 0.52^\circ \text{ in Y}$
- Beam between four mirrors
 - Lower left: -0.2 deg along Y, lower right: 0.2 deg along X
 - Upper left: -0.4 deg along X, upper right: 0.4 deg along Y